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ABSTRACT 

Safety analysis of Freeway segments with unobserved heterogeneity and second order spatial 

effects. 

By 

Eneliko Mulokozi 

Dr. Hualiang (Harry) Teng, Examination Committee Chair 

Associate Professor of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 
 

Safety analysis of freeway networks entails the quantification of crash frequency 

influencing factors which include roadway and traffic characteristics, environmental factors as 

well as human factors. This quantification can be used to detect locations with large impacts on 

the occurrence of crashes which in turn assist engineers and planners to improve safety levels of 

the network. Roadway characteristics are comprised of the physical elements of the road 

geometry such as section length, median and right shoulders, speed-exchange lanes, the number 

of main facility as well as geometry of the entrance from and exit to the main freeway facility. 

Traffic characteristics are comprised of traffic flow and vehicular volumes while environmental 

factors include weather conditions, pavement surface conditions, work zone areas conditions, 

and lighting conditions along the travel facility. Human factors are comprised of aging, 

aggressiveness while driving, mental stability, fatigue, alcoholism, acute psychological stress, 

suicidal behavior, drowsiness, and temporary distraction. 

Variability in the crash frequency is captured by the interaction of the aforementioned 

factors either in a multiplicative or additive nature through the use of statistical model 

formulation. When all factors believed to influence the occurrence of crashes are included in a 

mathematical formulation and all the assumptions underlying the statistical model are met, 
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variability in the crash frequency referred to as observed heterogeneity can be fully explained. 

However, not all information believed to generate crashes is available. Some of the factors are 

latent in nature and some are either not available at the time of analysis or require time and high 

cost to be established. When such conditions exist, a formulated model does not fully explain 

observed heterogeneity in the crash frequency. Lack of information to fully explain variability in 

crash frequency as a result of excluding some factors leads to unobserved heterogeneity 

problems which results in biased and inconsistent safety estimators. 

Specifically, when observed crash counts are considered as clusters, analytical approach 

should consider the possibility of dependence within clustered crash counts. Correlation within 

clusters may be due to variation being induced by common unobserved cluster-specific factors. 

Ignoring cluster-effects increases the likelihood in drawing conclusion based on unrealistic 

inferences because safety estimator standard errors are likely to be underestimated and the usual 

conditional mean is no longer correctly specified. Cross sectional dependence may also arise 

when the crash counts have a spatial dimension due to contiguous freeway segments. Such 

conditions lead to what is known as spatial autocorrelation. This is the presence of spatial pattern 

in crash frequency over space due to geographic proximity whereby high values of crash 

frequency tend to cluster together in adjacent freeway segments or high crash frequencies are 

contiguous with low values of crash frequencies. When the distribution of crash frequency over 

space exhibit the aforementioned pattern, safety analysis techniques based on the distributional 

assumption of independence of crash frequency is violated. 

This study has two objectives: First, analyze safety of freeway geometric features while 

accounting for the effect of unobserved influencing factors and cluster-specific effects; Second, 

analyze safety of freeway geometric elements in the presence of spatial autocorrelation due to 
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geographical proximity effects. To achieve the first objective, four models are compared: Two 

are standard Poisson and Negative binomial regression models which do not account for cluster 

effects. The other two are mixed effects Poisson and Negative binomial regression models which 

in addition to fixed effects parts they account for the effects of randomness arising from 

heterogeneity and clustering. 

The empirical results indicate that 13.9% of the variation in crash frequency is 

unaccounted for, which is an indication of the existence of unobserved factors influencing the 

occurrence of crashes. It is also revealed that weaving segments (EN-EX) had the highest 

between segment variance compared to non-weaving segments. More vehicles and short 

segments increased crash frequency while wider right shoulder decreased the crash frequency.  

It is also observed that weaving segments decreased crash frequency compared to non-

weaving segments. These results indicate that by allowing parameters to vary within the weaving 

and non-weaving segments it is possible to capture and quantify unobserved factors. Ignoring 

these factors results in biased coefficients because the estimate of the standard errors required 

determining inferential statistics will be wrong. 

To achieve the second objective, Conditional Autoregressive models in Bayesian setting 

framework (CAR) is used. CAR models recognize the presence of spatial dependence which 

helps to obtain unbiased estimates of parameters quantifying safety levels since the effects of 

spatial autocorrelation is accounted for in the modeling process. 

Based on CAR models, approximately 51% of crash frequencies across contiguous 

freeway segments are spatially autocorrelated. The incident rate ratios revealed that wider 

shoulder and weaving segments decreased crash frequency by factors of 0.84 and 0.75 

respectively. The marginal impact graphs showed that an increase in longitudinal space for 
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segments with two lanes decreased crash frequency. However, an increase of facility width 

above three lanes results in more crashes which indicates an increase in traffic flows and driving 

behavior leading to crashes. These results call an important step of analyzing contagious freeway 

segments simultaneously to account for the existence of spatial autocorrelation. 
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CHAPTER 1   INTRODUCTION 

1.0 Motivational background 

Safety analysis of a road network involve the application of statistical models which can 

be used to explain variability in the safety performance measure in terms of the variability in the 

observed factors believed to influence crash occurrence (Simon, Matthew, & Fred L, 2011), 

However, not all relevant information is observed to absolutely describe the source of variance in 

crash events because of either latent nature of this information or not easily obtained when 

needed. Missing some of the relevant factors in addition to their variability leads to what is 

known as unobserved heterogeneity which represent the combined effect of all unobserved 

factors (Skrondal & Rabe-Hesketh, 2004). 

When observation units are clustered in space, it is expected that there are shared 

unobserved heterogeneity that leads to intra-cluster dependence which violates distribution 

assumption of a statistical model. In addition to clustering effects and unobserved heterogeneity, 

crash events tend to co-vary in space leading to what is known as spatial autocorrelation, a type 

of spatial effects. Spatial autocorrelation is the spatial phenomenon exhibited in crash counts 

such that high crash counts are found near high values and low values are found near low values 

(Bolstad, 2005).  

Understanding factors involved in crash generating mechanisms have been an active area 

of research in traffic safety. Alternative methods are proposed to addrress complex issuess 

relating to unobserved heterogeneity and spatial correlation in crash frequency. However, due to 

the complex nature of the factors leading to crash occurrence and complex data structure 

required to capture most of the sources leading to variability and spatially correlated crash 



www.manaraa.com

 

2 

 

frequency, the current research has not fully describe most of the concerns arising due to 

unobserved factors and spatially correlated crash frequency.  

Addrressing these issues require the use of appropriate micro data structures that capture 

most of the variability in crash frequency. The current data structures used do not account for 

unobserved heterogeneity at all levels. For instance, (Venkataraman, Ulfarsson, Shankar, Oh, & 

Park, 2011) modeled the relationship between interstate crash occurrence and geometrics by 

using freeway segments at the interchange and noninterchange levels bu accounted only 

variation within the explanatory variables by estimating random parameters.  

Furthermore, Venkataraman, et al (2011) defined interchange segments by the furthest 

merge and diverge ramp limits for each direction. This definition indicates that a segment 

contained more than one interchange. Furthermore, noneinterchange segments were defined as a 

continuous travel segment between two interchanges. However, at the segment level it is 

possible to encounter factors which are likely to be involved in crash generating mechanism 

thereby causing one segment to vary from another in terms of crash occurrence experiences. 

Such differential variability across segments arises from the fact that some of the may factors 

affecting the frequency and severity of crashes are not observable and can be attributed to a 

specific segment. It is also tru that the necessary data required may be nearly impossible to 

collect. If these unobserved factors, referred to as unobserved heterogeneity, are correlated with 

observed factors, biased parameter estimators will be estimated and incorrect inferences could be 

drawn. 

Other studies such as (Anastasopoulos & Mannering, 2009) and (Veeraragavan & Dinu, 

2011) have also addressed these complex issues but they did not capture variability in crash 

frequency at all levels. For instance, (Anastasopoulos, et al, 2009) used segments with 
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homogeneous characteristics but accounted for random parameters only. However, even if a 

segment is homogeneous, there are still differences in terms of unobserved factors across these 

segmenst which need to be accounted for but were not captured. (Veeraragavan, et al, 2011) 

divided the highway into homogenous sections based on traffic volume, carriageway width, and 

shoulder width but only random parameters(slopes) were estimated. This leaves out variability at 

the segment level due to unobserved factors likely to be involved in crash generating 

mechanisms. 

The purpose of this research is to conduct analysis of safety performance measures on 

freeway segments while accounting for the shared unobserved heterogeneity and spatial 

correlation. In this study, freeway data from the Las Vegas Area in State of Nevada as illustrated 

in Figure 1 below are used. The following subsections explain in detail the aforementioned 

problems in terms of the roadway geometric characteristics and methods available to address 

these problems. Furthermore, importance of the proposed research to transportation engineers is 

explained. 
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Figure 1: Freeway networks (blue) under study 

 

1.1 Problem statement 

The level of safety of freeways depends on the interaction of a number of factors 

including elements of the road geometry, traffic characteristics, environmental and human 

factors (Ogden, 1996). Elements of the road geometry constitute the number of lanes on the main 

facility, length of a segments, shoulders, medians, entrances to and exits from the main facility as 

well as auxiliary lanes. Traffic characteristics include traffic flows, traffic mix and vehicular 

speed while environmental factors are made up of weather and pavement surface conditions. 

Human factors include driving behavior leading to inappropriate and excessive speeding, age, 
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fatigue, inattention, and impairment such as inadequate visibility. Safety level is manifested in 

terms of crash frequency or severity when the aforementioned factors interact in such a way that 

one or more of the factors do not execute an appropriate function. 

Crash frequency, a measure of safety level, is related to the combination of influencing factors 

through a mathematical formulation which identifies individual factors contribution to the 

overall safety level (Sarhan, Hassan, & Adb El Halim, 2008; Shankar, Mannering, & Barfield, 

1995; Chen, Liu, Lu, & Behzad, 2009;  Liu, Chen, Lu, & Cao, 2010; Chen, Zhou, Zhao, & Hsu, 

2011; Golob, Recker, & Alvarez, 2004; Joe, Greg, & Davey, 1999);. In the context of freeway 

networks, the mathematical model considers a freeway as made up of individual units of study 

on space from which crash frequency and influencing factors are observed and associated using 

an appropriate model. In order to quantify an individual factor contribution through a 

mathematical model, it has to be observed and measured either quantitatively or qualitatively on 

an appropriate cardinal scale. It further should exhibit variability in order to account for the 

observed variability within the crash frequency. When these conditions are met, a mathematical 

model employed can appropriately describe the safety level in terms of variability in crash 

frequency resulting from observed heterogeneity in influencing factors. 

 However, in practice, not all relevant factors are observed either in a pre-crash or post-

crash environment. For instance, Chen, H. et al (2010) postulated the following safety 

performance function for evaluating left-side off-ramp at freeway diverge area: 

𝑌1 = (𝑋1)0.5060(𝑋2)0.7412exp (−1.7518 + 0.1817𝑋3 + 0.8401𝑋4 − 0.7575𝑋5 

where 𝑋2 𝑡𝑜 𝑋5 respectively represent mainline AADT, ramp AADT, ramp location (left-side or 

right side), length of deceleration lane, and ramp length. As it can be noted from the equation, 

other factors particularly environmental and human factors were not included. Shankar, V et al 



www.manaraa.com

 

6 

 

(1996) showed that environmental factors such as extent of snow have an impact on the crash 

occurrence. Being fatigued significantly increases the risk of a crash. It makes a driver less aware 

of what is happening on the road and impairs his/her ability to respond quickly and safely if a 

dangerous situation arises.  When a crash influencing factor cannot be observed and measured 

appropriately, it leads to unobserved heterogeneity since it omits important information in 

explaining the observed variability in crash frequency. A mathematical formulation which does 

not include all relevant factors leads to biased and inconsistent weights which quantify an 

individual factor contribution towards the overall safety of the network. Furthermore, decision 

makers are likely to arrive at incorrect decisions of improving safety levels through the use of 

countermeasures since the results are based on incorrect underlying factor interactions. 

Another form of dependence occurs when units of analysis are clustered. A mathematical 

model which incorporates clustered freeway sections induces dependence because any two 

randomly selected sections in the same cluster tend to be alike compared to units selected from 

different freeway sections. If clustering is ignored in a mathematical model, inferential statistics 

are wrong because the standard errors of the weights are generally underestimated. This may 

wrongly lead a research to infer that an influencing factor has a real effect on the outcome when 

in fact the effect could be ascribed by chance. 

In addition to the effect of unobserved heterogeneity in analyzing safety, homogeneity 

assumption of influencing factors is restrictive. Parameters that describe a factor’s effect apply to 

all categories of interest such as segment lengths or the type of a segment (Figures 2 & 3). Figure 

2 shows two sites with different segment length while in Figure 2, the sites are differentiated by 

the ramp configuration: EX-EN as type 1 and EN-EX as type 2 where EX stands for exit and EN 

for entrance. In these cases an impact of an influencing factor is assumed to be constant for all 
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the sites under study. Past research has identified that long segments in freeways experience few 

crash frequency in any observed period of study and crash events occurrence in weaving 

segments is different compared to non-weaving segments. However, for two segments with 

differential lengths, the homogeneity assumption characterizes the impact of these lengths to be 

the same based on the assumption that other factors influencing a crash are held constant. These 

results obscure the ultimate goals of safety analysis which aims to identify locations with higher 

level of impact on crash frequency in order to design appropriate countermeasures. 

 

 
Figure 2: Two sites with different lengths 
 

 
Figure 3: Two sites with different ramp configurations (EX-EN Vs EN-EX) 

 

Spatial effects are likely to be experienced in the analysis process due to the special 

nature of crash frequency distribution. Spatial effects manifests through spatial autocorrelation in 

crash frequency across contiguous freeway segments. Spatial autocorrelation is the presence of 

spatial pattern in crash frequency over space due to geographical proximity (Ramosa, 2013; Li, 
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Zhu , & Sui, 2007; Aguero-Valverde, 2014; Black & Thomas, 1998; Wang & Kockelman, 2013). 

When the distribution of crash frequency over space form patches of clusters such that high 

values of crash frequency tend to cluster together in adjacent freeway segments or high crash 

frequencies are contiguous with low values of crash frequencies then safety analysis techniques 

based on the distribution assumption of independence of crash frequency is violated. In this case 

the ultimate results quantifying the safety levels are biased.  

Addressing the aforementioned issues require the use complex data structures and 

statistical models to be able to address sources of variability in crash frequency at a micro-level 

sections along the road network. This study proposes analysis safety on freeways to address 

these issues at a micro-level of data structures by dividing a freeway segment into small sections 

in space and capturing traffic characteristics associated with crash frequency from those sections. 

Due to variability across segments, the study further incorporates contextual variables at the 

segments level such as geometric characteristics and randomizing the model intercept to be able 

to capture factors which are unobserved but are likely to contribute to crashes. Furthermore, 

spatially correlated crash frequencies are addressed by considering events arising from 

contiguous freeway segments based on the notion that each freeway segment is likely to affect or 

influence crash events generated form the abutting segments. 

 

1.2 Research hypotheses 

This research assumes the existence of dependence within crash counts across sites on 

freeway network. Correlation within clusters may be due to variation being induced by common 

unobserved cluster-specific factors. Ignoring cluster-effects increases the likelihood in drawing 

conclusion based on unrealistic inferences because estimator standard errors are likely to be 
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underestimated and the usual conditional mean is no longer correctly specified. It further 

assumes that the distribution of crashes extends beyond the influence areas of the divergence and 

convergence segments as well as weaving segments. By including these areas, data within the 

weaving and non-weaving segments can be clustered to quantify the variability of unobserved 

factors through the variance of random parameters using multilevel count models. 

Cross-sectional dependence may also arise when the crash counts have a spatial 

dimension due to contiguity of units of observations. Based on spatial phenomenon, it is assumed 

further that there exists spatial autocorrelation in crash frequency over space due to geographic 

proximity. When the distribution of crash frequency over space form patches of clusters such 

that high values of crash frequency tend to cluster together in adjacent freeway segments or high 

crash frequencies are contiguous with low values of crash frequencies then safety analysis 

techniques based on the distributional assumption of independence of crash frequency is 

violated. 

 

1.3 Objectives 

Objective #1: To analyze safety of freeways using geometric and traffic characteristics while 

accounting for the effect of unobserved characteristics  

To address the problem of unobserved characteristics, the observed crash counts are 

considered as clusters embedded within the segments and therefore analytical approach considers 

the possibility of dependence within clustered crash counts as a result of unobserved cluster-

specific factors leading to correlations (Karlaftis, G.M., and Tarko, P.A.1998; Abdel-Aty, M., 

and Huang, H. 2010; Lord, D., and Mannering, F. 2010). Based on this data structure the impacts 

of geometric and traffic characteristics on observed crash frequency on freeway segments will be 
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analyzed while controlling for the effects of unobserved influencing factors and cluster-effects 

by comparing four count models: two are standard Poisson and negative binomial regression 

models which do not account for cluster-effects while the other two are Mixed-effects Poisson 

and negative binomial regression models which in addition to fixed-effects parts they account for 

the effects of randomness arising from heterogeneity and clustering.   

Defining the segments as stretches between their ramps locations allows the analysis to 

include crashes beyond the influence areas because the distribution of crashes in space is not 

limited to only the influence areas of the divergence and convergence segments as well as 

weaving segments. To this point data are clustered within the weaving and non-weaving 

segments to quantify the variability of unobserved factors through the variance of random 

parameters using multilevel count models. The mixed-effects models are estimated by Gauss-

Hermite quadrature method because the distributions assumed for unobserved heterogeneity and 

cluster-effects are different and these have to be integrated out of the conditional mean. 

 

Objective #2: To analyze the existence of spatial autocorrelation on contiguous freeway 

segments with ramps as natural delineators while controlling for traffic and geometric 

characteristics observed. 

Under this objective, two count models will be used: Non-spatial and Spatial Poisson 

models (Lee D. 2011 & 2014). This analysis is based on the results to be obtained in the previous 

section which aims to identify the existence of unobserved heterogeneity in freeway segments 

causing crash frequency variation unaccounted for by traffic and geometric characteristics. It 

should be noted that the existence of spatial autocorrelation is an indication of the presence of 

unobserved factors unaccounted for which are manifested through the residual spatial 



www.manaraa.com

 

11 

 

autocorrelation. To this point the hypothesis is that crash frequency observed in contiguous 

freeway segments exhibit spatial phenomenon leading to spatial autocorrelation and a value of 

the spatial autocorrelation parameter significantly away from 0 is an indication of the existence 

of spatial phenomenon across adjacent segments. 

This study investigates the existence of spatial autocorrelation in crash frequency across 

contagious freeway segments. Spatial autocorrelation is the presence of spatial pattern in crash 

frequency over space due to geographic proximity. When the distribution of crash frequency 

over space form patches of clusters such that high values of crash frequency tend to cluster 

together in adjacent freeway segments or high crash frequencies are contiguous with low values 

of crash frequencies then safety analysis techniques based on the distributional assumption of 

independence of crash frequency is violated. However, Conditional autoregressive models are set 

up, in a Bayesian modeling framework, to include terms which help to identify and quantify 

residual spatial autocorrelation for neighboring observation units. Models which recognize the 

presence of spatial dependence helps to obtain unbiased estimates of parameters quantifying 

safety levels since the effects of spatial autocorrelation is accounted for in the modeling process. 

Figure 4 below shows types of inputs and expected outputs for both objectives. 
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Figure 4: Inputs and outputs of study objectives 

 

To appropriately accomplish the objects indicated on Figure 4 and obtained reliable 

estimators to address issues of unobserved heterogeneity and spatially correlated crash 

frequency, Figure 5 below displays research methodology to be focused on. Each objective as 

shown above will follow the same research methodology but with different statistical model 

setting as explained in detail in chapters 3 and 4 of the statistical methodology.  
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Figure 5: Flow chart of research approach 
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1.4 Study contributions 

Limitations observed on the current literature suggest the need to address complex issues 

of unobserved heterogeneity and spatially correlated crashes by using complex data structures to 

help in understanding sources of variability and correlated crash frequency from abutting areas. 

This research differs from the previous research activities by using a different segmentation 

concept which addresses these issues at a micro-level data structure. Unobserved heterogeneity 

issues are addressed by dividing a freeway segments into small sections on which sensors are 

embedded and traffic characteristics can be observed easily and associated with crash frequency. 

Such setting helps to introduce more variability in crashes for successive sections within a 

freeway segment. An example of such a data structure is shown in Figure 6. 

 

    

Figure 6: Proposed data structure to address unobserved heterogeneity 

 

Figure 6 is a clear picture which shows that more variability is likely to be captured when 

a freeway segment is further subdivided into small sections. This implies that variations arising 
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from each sub-section are likely to be captured. Furthermore, variability at the segment level is 

also possible by including context factors which vary at the segment level but are constant within 

a segment. These factors include geometric elements associated with a particular freeway 

segment. Since the model setting further requires the model intercept to vary across segments, 

more factors which are unknown or cannot be collected are also addressed. Current literature has 

address only among the sources of variability in crash frequency. This study addresses both 

variability by allowing slopes and intercept of the regression functions to vary across the freeway 

segments.  

Issues of spatially correlated can be addressed by focusing on freeway segments sharing 

an arbitrary border as shown in Figure 7. Congestion levels on the network are likely to cause 

secondary crashes and in the event that the congestion levels are high spill over will occur due to 

shock waves on the segments behind another segment. Spill over may also occur when an 

incident a primary crash has occurred in the close proximity of a segments sharing border which 

in turn may lead to a secondary crash on another segment. Based on this concept and in addition 

to the primary crash occurrence, it is clear that each segment is likely to affect the other. 

 

 

Figure 7: Contagious freeway segments to address spatially correlated crash frequency 

 

In addition to the above contribution of the study in addressing the arising complex issues 

through the use of micro-level data structure, under objective 1, the model framework gives an 

engineer, the cluster of the actual segments with above average crash frequency. Spotting out 
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these segments is a way of screening the network to find locations with need for improvement 

and efficient allocation of resources in the sense that improvement resource can be allocated to 

areas where there is a need.  

The model can also be applied in the before-after studies in road safety of actual roadway 

sections where the geometric elements were changed. This study will consider the analysis 

period to be 2013 and therefore the findings provide an estimated model of what safety levels 

was if changes in geometric elements were made prior to the analysis period. This comprise an 

after study results. Data prior to the analysis period can be used to obtain a prediction model and 

through extrapolation, the model predicts what would have been the safety levels in the absence 

of changes in the geometric elements (Hauer, E. 1997). The difference of safety levels before and 

after studies indicates improvement.  

The sign and direction of improvement is a function of specific changes made. For 

instance, an additional lane on the main facility between on-and off-ramps is likely to indicate 

better positive safety levels due to an added freeway capacity expected. Negative safety levels 

may results from narrowing a geometric element such as a shoulder for the purpose of adding 

high occupancy vehicle lanes. It is therefore important to conduct before-after studies to quantify 

actual levels of safety once changes are made in a network. 

The model which addresses spatial effects can be applied as a discriminant model. This is 

based on the fact that spatial effects terms are included in the modeling process. Theories on the 

estimation process require integrating out these effects and summarize them in terms of variance, 

a method which leaves out the actual influences of the remaining factors. Based on the graphical 

plots to be produced a researcher can point out locations on the freeway network from which its 

factors exhibited more impacts on the crash frequency. Another important application is based on 
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the natural interpretation of most of the regression coefficients. Negative coefficients in most of 

the cases mean the corresponding factors had a negative impact and therefore by increasing those 

factors help reduce crash frequencies on freeways.   

 

1.5 Organization of the dissertation 

This dissertation is comprised of eight chapters: chapter one describes motivational 

background, problem statement, research hypothesis as well as study objectives. Chapter two 

contains literature review while chapter three describes multilevel count model for clustered data 

where variant of traditional and hierarchical count models are detailed. Chapter four describes 

models designed for spatial data. Specifically Conditional Autoregressive Models (CAR models) 

are discussed in conjunction with generalized Poisson regression model. The CAR models 

account for spatial autocorrelation through a binary spatial weight matrix supplied by CAR 

models in a form of CAR priors. Chapter 5 describes data collection and input while chapters six 

and seven discuss model results. Chapter eight includes conclusions and recommendations. 
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CHAPTER 2    LITERATURE REVIEW 

2.0 Non-spatial modeling 

This section reviews safety modeling practices for non-spatial modeling of freeway 

segments. Non-spatial modeling entails only the mathematical association of crash frequency 

with geometric, traffic, environmental and human characteristics of a freeway segment without 

involving its spatial effect. In this case, the expected crash frequency of a segment is assumed to 

be fully described by only non-spatial characteristics which do not incorporate location 

characteristics such as inverse distance or spatial contiguity matrices. For clarity, a freeway 

segment – here referred to as an observational unit - is defined as the length of a roadway 

between two points on space over which traffic and physical characteristics remain the same 

(TRB, 2010). Three types of segments have been an area of research: weaving segments, 

freeways merge segments, and freeway diverge segments. Weaving segments are characterized 

by closely spaced merge and diverge areas as well as the presence of one movement crossing the 

path of another in the absence of signals. (Roess, Prassas, & McShane, 2011). Merge segments 

are formed when two traffic streams form a single stream while diverge segments are formed 

when a single traffic stream separates into two streams. 

Geometrically, these segments are comprised of deceleration and acceleration lanes 

acting as speed change lanes, the number of through lanes to facilitate through movements, on-

and off-ramps for entering and exiting vehicles respectively. In addition to these geometric 

elements, segments are also differentiated when traffic operation is such that the terminals 

operate independently (AASHTO, 2011).  

Based on the fact that traffic volumes along the freeway segment vary, the manual 

provides guidelines which requires that consistency has to be maintained in the basic number of 
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lanes designated over a given length of a route. This is independent of the changes in the levels 

of traffic volumes and lane balance needs. According to the lane balance principle, the number of 

lanes beyond the merging point of the entrance should not be less than the sum of traffic lanes on 

the merging roadways. At exits, the number of lanes on the main facility should be equal to the 

number of lanes on the exit minus one. An example of lane balance principle can be seen on 

Figure 8 below for a diverge segment. At location “A’ there are five lanes including the auxiliary 

lanes and the sum of lanes at locations “B” and “C” minus one equals five. According to the lane 

balance principle, the segment is lane balanced. 

 

 

Figure 8: Lane - balance principle at exit 

(Source: http://www.wsdot.wa.gov/publications/manuals/fulltext/M22-01/1360.pdf) 

 

2.0.1 Observed heterogeneity counts modeling 

Geometric design elements have been an active area of research due to their influence on 

crash occurrence (Garber & Hoel, 2009). The levels of influence of these elements are quantified 

by associating crash frequency, a measure of the number of crashes experienced on the site of 

http://www.wsdot.wa.gov/publications/manuals/fulltext/M22-01/1360.pdf
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interest per period, with numerical values measured on the influencing factors. For instance, the 

study done by (Liu, Chen, Lu, & Cao, 2010) employed a generalized linear model with log link 

to investigate how lane arrangements on freeway mainlines and ramps affect safety of freeways 

with closely spaced entrance and exit ramps based on consistency of basic number of lanes and 

lane balance principles. Their study area involve a stretch of 1000ft upstream of the merging area 

at the entrance and downstream area of the gore are including a distance between entrance and 

exit.  

Furthermore, (Liu, et al, 2010) identified a total of seven different lane arrangements 

which included (1) segments with continuous auxiliary lanes between segment terminals where 

segment coded as type B had an auxiliary lanes ended up with a two lane exit and those 

identified as type C had auxiliary lanes ended with one lane exit, (2) Type A segments with one 

lane entrance followed by one lane exit from which some of the segments had a tapered type at 

type entrance and exit while others had parallel type entrance and tapered type exit, (3) Segments 

with one lane entrance and two exit where the outer lane is dropped at the exit gore and a taper is 

provided at the exit, (4) segments with two lane entrance followed by two-lane exit with lane 

drop for one type and the other with a lane drop for only the outer lane. Based on their main 

characteristic of lane balance coordination and basic number of lanes, the research team found 

that segments with continuous auxiliary lanes connecting closely spaced entrance and exits 

ramps, and where the exit ramp ends with two lanes (designated as Type B), had the highest 

average crash frequency, crash rate, and percentage of fatal plus severe injury crashes. They also 

found that more lanes, ramp AADT and posted speed limit increased crash frequency.  

The study done by (Sarhan, Hassan, & Adb El Halim, 2008) used Poisson and negative 

binomial models to investigate safety performance of freeway sections in relation to speed-
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change lanes. With a focus on the influence of the characteristics of speed change lanes 

(acceleration and deceleration lanes) of merge and diverge areas as well as weaving segments on 

the freeway safety performance revealed that traffic volume and the number of travel lanes on 

the main facility increased crash frequency. The effect of the number of lanes implies that more 

lanes increases the number of lane changes which in turn is likely to increase crash frequency. 

Long lengths of acceleration and deceleration lanes decreased crash frequency because drivers 

can easily complete merging or diverging tasks. Their findings also indicated that segments with 

extended acceleration lanes increased crash frequency compared to segments with limited 

acceleration lanes. Extended acceleration lanes in this case are expected to have double function: 

(1) used as an acceleration lanes for vehicles merging, and (2) used as a deceleration lane for 

merging traffic. 

(Chen, Zhou, & Liu, 2014), observed that short lengths of deceleration lanes on diverge 

areas has the highest counts because vehicles do not have enough space to reduce speeds 

smoothly and weave to the exit ramps. Optimal deceleration lane lengths between 500ft and 

700ft were strongly recommended. Their segments consisted of exit sections with parallel and 

tapered design.  

(Golob, Recker, & Alvarez, 2004), found that location where a crash has occurred as well 

as type of movement performed by the vehicles involved were the most significant factors 

influencing crash occurrence on weaving sections with sideswipe collisions having the highest 

likelihood of occurrence. Improvement in signage, lighting, pavement resurfacing, and 

enforcement on posted speed limits as well as implementation of changeable message signs 

warning of potential hazards have been recommended in their study. 
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(Chen, Liu, Lu, & Behzad, 2009) used generalized linear model with a log link and 

focused on diverge sections with an area spanning 1500ft upstream and 100ft downstream of 

painted nose and found that freeway and ramp AADT, posted speed limit on freeway, 

deceleration lane length, right shoulder width and the type of exit ramp significantly affected the 

safety performance of freeway diverge areas. In addition to freeway and ramp traffic demand as 

determinants of the number and arrangement of lanes on freeway exit ramps, this research added 

the benefit to quantify the impacts of different exit ramp types on the safety performance of 

freeway diverge areas. 

 (Joe, Greg, & Davey, 1999), focused on the ramps (entrance and exits) to estimate 

accident frequencies as a function of ramp and mainline traffic characteristics. Used the 

definition of speed-change lane as the length from the painted gore point to the end of the lane 

taper, their findings indicated that increasing speed-change lane reduced the number of crashes. 

The team also revealed that an increase in the annual average daily traffic of the mainline facility 

increased the number of crashes (Cirillo, 1970), worked on the same subject and found that 

lengthening acceleration lane is more beneficial compared to lengthening deceleration lane.  

(Chen, Zhou, Zhao, & Hsu, 2011), concentrated on diverging areas by comparing off-

ramps on the right-side of the main facility with those on the left-side of the facility based on 

ramp lane configurations. Count models were estimated with segmentation involving 1500ft 

upstream and 1000ft downstream of the diverge areas. Their results indicate that for one-lane 

exit ramps, length of deceleration lane and AADT on main facility increased the number of 

crashes. The left-side ramp increased crashes compared to the right-side ramp.  

(Shankar, Mannering, & Barfield, 1995), used Poisson and Negative binomial models to 

associate geometric elements and weather factors with type of crash frequencies. A total of six 
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models were estimated with type of crash counts comprised of sideswipe, rear-end, parked 

vehicle, fixed objects, overturn, and same direction accident frequencies. Their results indicated 

that both geometric and environmental factors have an impact on crash frequencies though the 

magnitude of impact is different across different types of crash frequency.  

(Bonneson, Geedipaly, & Pratt, 2014), developed safety prediction methods for freeways 

and interchanges to address freeway segments and speed-change lanes safety by including crash 

modification factors (CMFs) that describe the observed relationship between crash frequency 

and freeway geometric and traffic characteristics. The research team found that crashes on 

curved freeway segments with shoulder rumble strips were more frequent than on curved 

segments without shoulder rumble strips.  

The aforementioned research activities considered only the fixed part of the models from 

which the effects of geometric and traffic characteristics are considered constant across the sites. 

In this study, we extend further the analysis on the effects of geometric features by incorporating 

items which accounts for unobserved factors in count models to allow parameters to vary across 

segments in order to capture and quantify unobserved factors. This approach avoids biased 

coefficients in multilevel settings because the estimate of the standard errors will be correct. 

 

2.0.2 Unobserved heterogeneity counts modeling 

2.0.2.1 Random parameter counts modeling 

(Venkataraman, et al 2011) employed random parameter negative binomial model to 

analyze crash counts on using data from Washington State’s Interstate system for investigating 

heterogeneity issues in the mean of slope regression coefficients. Both traffic and geometric 

characteristics of segments were used in the analysis including lighting type proportions by 
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length, shoulder width proportions, lane cross-section proportions, number of vertical curves in a 

segment, the shortest horizontal curves in a segment length, the largest degree of curvature in a 

segment, the smallest vertical curve gradients, and the largest vertical curve gradients in a 

segment.  

Their results indicated that curvature effects were found to be random which implies that 

the effects varied from one segment to the other. It was also found that the largest degrees of 

curvature, as well as the smallest and largest vertical curve gradient variables, were found to 

exhibit randomness. Furthermore, traffic characteristics expressed as the logarithm of average 

daily travel and the median and point of lighting proportions were found to exhibit randomness 

in influencing crash frequency.  

(Anastasopoulos & Mannering, 2009) investigated factors that influence the frequency of 

crashes by using a random effect model in which an intercept is allowed to vary for accounting 

heterogeneity issues based on Poisson and negative binomial count data models. The research 

team used crash data collected on 322 roadway segments with homogeneous characteristics from 

rural interstate highways in Indiana. Pavement, geometric, and traffic characteristics were 

included in modeling process. Pavement characteristics included friction, international roughness 

index (IRI), average pavement condition rating (PCR), and rutting (good and excelling states). 

Geometric characteristics included segment length, median and right shoulders, average 

horizontal curve degree, number of vertical curves per mile, and ramp density while traffic 

characteristics constituted average daily traffic of passenger cars and average daily percent of 

combination trucks in a traffic stream. Their results indicated that random-parameters negative 

binomial outperformed Poisson models both in a fixed-effect and random-effects settings.  
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The decision rules to either apply fixed effects or random effect is applied is based on the 

significance of the standard deviation of the parameter density. If it is found to be different from 

zero, then the parameter is fixed across the population of roadway segments. Based on this rule, 

it was found that international roughness index (IRI), rutting indicator variable, roadway segment 

length, presence of median barrier, interior shoulders, horizontal curves degree of curvature, and 

average annual daily traffic (AADT) exhibited randomness characteristics with standard 

deviation of the parameters distribution being different from zero. 

 (Dinu & Veeraragavan, 2011) employed random parameter model approach for 

predicting crashes on two-lane undivided rural highways in India. Highway segments were 

divided into homogeneous sections based on traffic volumes, carriageway width, and shoulder 

width and from these sections geometric and environmental characteristics were collected and 

the modeling approach accounted for the difference in traffic volume levels and composition by 

separating day-time and night time crashes. Their results showed that predictors related to traffic 

composition had standard deviation significantly different from zero when modeled as random 

parameters. This implies that the associated characteristics exhibit heterogeneity behavior in 

influencing crash occurrence. 

With respect to the day-time crash frequency model, it was shown that hourly traffic 

volume, length of highway segment, proportion of cars and motorized two-wheelers in traffic, 

driveway density, width of shoulder and horizontal and vertical curvature were found to 

significantly influence crash occurrence frequencies while the night-time model indicated that 

hourly traffic volume, length of highway segment, proportion of buses, cars, and trucks, 

driveway density, and vertical curvature were found to be significant. However, proportion of 
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cars and tracks decreased crash frequency with remaining factors leading to an increase in crash 

frequency.  

Furthermore, their results indicated that traffic, vehicle, and geometric characteristics 

exhibited randomness in influencing crash frequency. These results reflect the existence of 

variability associated with different characteristics. In particular it was observed that different 

vehicle types may likely lead to randomness in traffic volume and composition while driver 

behavior is likely to influence variability observed in road geometric characteristics and access 

factors such as driveway density. 

 (Garnowski & Manner, 2011) also extended the traditional count model by allowing 

random parameters across observations to investigate factors related to crashes on German 

highway clover leaves and diamond interchanges while accounting for the possible existence of 

parameter heterogeneity. Their study included crash data, traffic and geometric characteristics 

observed on the aforementioned highway connectors. Ramp length, length of the deceleration 

lane, total width of the lanes on ramps, width of the shoulder lanes, curve angles and their 

lengths, as well as number of lanes both on ramp and main facility constituted geometric 

characteristics. Traffic characteristics included separate flow in terms of average daily traffic of 

vehicular mix and total flow for all vehicle mix combined. Their results showed that negative 

binomial model with random coefficients outperformed the Poisson base model. In addition to 

model selection between competing models, it was revealed that average daily traffic of 

passenger cars, absolute total deflection angle, truck percentage, and steeper curves were 

statistically significant. With respect to random coefficients it was observed that steeper curves, 

length of the deceleration lane, and position of the steepest curve exhibited randomness. 
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In addition to the aforementioned techniques of investigating heterogeneity issues by 

randomizing regression coefficients, grouping or clustering information had been used in safety 

research activities to reduce heterogeneity through the selection of homogeneous data to be 

analyzed. (Wong & Chung, 2008) used clustering and classification approaches to analyze 

heterogeneous crash data from the perspective of crash occurrence; the aim being to compare 

group-specific characteristics and to examine the observed heterogeneity among crash groups. 

Grouping rules based on set theory and logistic regression model techniques applied on driver, 

trip, behavior and environmental characteristics as well as crashes. 

Their findings revealed the existence of heterogeneity across distinct features associated 

with groups. In addition to this finding, it was also observed that driver characteristics such as 

age, gender and occupations were statistically significant while trip purpose and time were 

statistically significance with respect to trip characteristics. Statistical significance with respect 

to behavior and environmental characteristics were found in speed limit, road shape, sight 

distance and obstruction, weather, lighting, traffic control mechanisms as well as cell phone use 

and drinking condition of drivers. 

Median crossover crashes also have been an area of active research. (Shankar, Albin, 

Milton, & Mannering, 1998) evaluated median crossover likelihoods based on clustered crash 

counts in Washington state using random effects negative binomial as well as cross-sectional 

negative binomial model with the formal outperformed the latter model with respect to 

unobserved spatial and temporal effects. Random effects negative binomial assumed that 

location-specific effects with respect to overdispersion are randomly distributed across groups. 

Their study constituted sections without median barriers on divided state highways and 
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characteristics such as the number of crashes, traffic and geometric characteristics were 

observed.  

Geometric characteristics included length, shoulder and median widths, total number of 

facility lanes, grades as well as number of curves. Traffic characteristics included average daily 

traffic and speed limit while vehicle characteristics constituted single-and double-unit truck 

percentages as well as total truck percentages. Their results indicated that location and time – 

specific variables with respect to random effects negative binomial model were significant. 

Accounting individual factors, it was observed that average daily traffic had a negative impact on 

crash occurrence which implies a counterintuitive effect, a notion which reflects the existence of 

negative association with other influencing factors. Furthermore, median width had a positive 

impact which reflects the existence of narrow median width and flatter median fore slopes for 

wide medians. Other factors such as the interaction of shoulder width and friction variables on 

horizontal curves positively affected median cross over frequencies. 

 

2.0.2.2 Multilevel counts modeling 

Multilevel modeling approaches, also known as hierarchical models have been given 

much attention in traffic safety research for its ability to account for unobserved heterogeneity 

(Huang & Abdel-Aty, 2010) proposed the use of multilevel framework in a different setting of 

data structures related to traffic safety as a function of clustering processes. The research team 

revealed five different levels from which traffic safety data structures can be observed and the 

levels ranged from geographic region level to occupant level with the intermediate levels 

constitute traffic site, traffic crash, and driver-vehicle unit levels.  
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The aforementioned levels of data structure were demonstrated in their study based on 

real-word datasets. To insist the existence of levels, this study cited two examples from their 

study related to both crash frequency and crash severity. Related to crash frequency, the research 

team indicated possible existence of levels involving nested groups where county is at the 

highest level representing geographic region level. Within the geographic level (county level) it 

was observed that corridor components of the roadway facility constitute the next level nested 

into the county level and at the lowest level intersection characteristics are observed. With 

respect to crash severity, example of possible levels observed included grouping of 

characteristics at the road segment and traffic crash levels with the formal level being at the 

highest level of the hierarchy.  

In the severity level model, average daily traffic and driver age characteristics were 

observed to explain differential severity outcomes while accounting for the possible existence of 

segment-specific random effects as a function of cross-road segment heterogeneity. Segment 

level covariates were also included to determine variable threshold values of the severity 

outcomes. Their results indicated that segment-specific random effects exist as a function of 

omitted confounding factors associated with road segments. Furthermore, it was observed that 

the proposed multilevel crash severity prediction model was better compared to ordinary ordered 

model.  

With respect to the crash frequency data structure, it was pointed out that crashes that 

occurred within a same county are likely to exhibit dependence when compared to the observed 

crash frequency at the corridor level while intersections within the same corridor may exhibit 

correlated characteristics due to omitted corridor-specific characteristics. In their study, random 
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effects were investigated at the corridor level by specifying corridor-specific heterogeneity. The 

results revealed the existence of within-corridor correlation. 

(Yu, Abdel-Aty, & Ahmed, 2013) employed Bayesian hierarchical models to analyze the 

effect of mountainous freeway hazardous factors on crash frequencies from Colorado state with a 

focus on season differential impacts on safety levels. Based on the fixed effects model, over-

dispersed Poisson model with no correlation and the over-dispersed correlated Poisson model, 

two types of models were investigated: (1) seasonal model and (2) single-vehicle Vs multi-

vehicle crash models. To account for unobserved heterogeneity, two random effects, segment 

season specific random effect and segment only specific random effect, were included in 

modeling process. 

Furthermore, to account for the effect of observed heterogeneity, traffic and geometric 

characteristics as well as weather factors were included in modeling. Seasonal model included 

daily vehicle mile traveled, grades, and average speed for the crash segment as well as visibility 

and temperature during crashes. For single-vehicle and multi-vehicle crash model, precipitation, 

speed and occupancy factors were included. With respect to seasonal model, their results 

indicated that significant season effect exists. Specifically, it was observed that steeper slopes 

experience a higher crash frequency and the upgrade segments are safer compared to downgrade 

segments. Also it was observed that vehicle mile of travel and precipitation volumes had a 

positive impact on crash frequency while visibility conditions decreased crash frequency. 

Single-vehicle Vs multi-vehicle crash model also revealed the existence of factors 

influencing crash occurrence. In this model, it was observed that crashes are more likely to 

happen at the segments with a sudden high precipitation, lower speed at the crash segment and 

higher occupancy at the upstream segment 5-10 minutes before the crash time increased the 
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likelihood of crashes. It was further observed that single-vehicle is more influenced by other 

compared to upstream and downstream traffic status. With respect to multi-vehicle, it was 

evident that traffic variables influence crash occurrence and their factors are more associated 

with congestion levels. 

 

2.0.3 Summary 

The aforementioned review on non-spatial modeling painted unique differences across 

models which do not account for the existence of unobserved heterogeneity compared to those 

which accounts for unobserved heterogeneity. Observed heterogeneity can be modeled by counts 

models based on the assumption that crash distributions across observational units are 

independent and heterogeneity across crash frequency can be capture by a gamma-distributed 

random effects which accounts for the existence of over-dispersion across crash counts. The use 

also assumes that variability within the observed crash counts can also be accounted by only the 

observed covariates used. However, these models are limited by the fact that when omitted 

variable cases arise, then the models are likely to encounter heterogeneity issues leading to 

unobserved heterogeneity. Under these models, it is also assumed that the impact of influencing 

factors is the same across the site under investigation, a factor which may not be true in real 

world. 

To account for the aforementioned limitations, researchers tried to build in randomness in 

the modeling safety on the highways whereby a regression coefficient has random effects in 

addition to its fixed effects. This implies that differential impact expected within the same factor 

can be realized when the standard deviation of the distribution of a regression coefficient is 

significantly away from zero. By allowing some or all of the parameters to vary, heterogeneity is 
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accounted for and the biasness and inconsistency of the estimates are likely to be avoided and 

therefore inferential statistics are reliable. 

Further extension from randomizing slopes is to allow the intercept to vary across the 

observed units of analysis. This has proved to be of great importance when data structures are 

such that groups exists and have nesting structures leading to a multilevel or hierarchical 

structure. In this regard multilevel counts models have been applied to capture the existence of 

unobserved heterogeneity at higher levels which are likely to influence the outcomes at the 

lowest levels of groups. However, groupings which lead to different levels depend on different 

research purposes and introduce levels of dependences within the outcomes observed in the same 

group. This means unobserved heterogeneity can be observed at different higher levels involved 

in the formation of data structure.  

 

2.1 Spatial modeling 

Crash events occur spatially along the highway network and including spatial effects in 

crash prediction models help to explain variability observed in crash frequency and avoid 

making inference on biased estimates. (Black & Thomas, 1998) employed a network 

autocorrelation analysis to examine accident distributed along the segments of a highway system 

and found a significant level of positive spatial autocorrelation. (El-Basyouny & Sayed, 2009) 

used Gaussian conditional autoregressive and multiple membership models on 281 urban 

segments in Vancouver, Canada and found that spatial autocorrelation across urban segments 

explained approximately 87.6% variability in crash rates for CAR model while it was 

approximately 98.5% for multiple membership models. In addition to these findings, it was also 
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revealed that AADT, business land use, number of lanes between signals and density of 

unsignalized intersections had significant positive impact on the number of crashes.  

(Guo, Wang, & Abdel-Aty, 2010) employed Bayesian count and Gaussian models to 

incorporate corridor-level and intersection proximity spatial autocorrelations in predicting crash 

rate and crash frequency and it was revealed that the size of an intersection, traffic conditions for 

both through and turning movements and the coordination of signal phase have significant 

impacts on intersection safety. This implies that closeness of coordinated intersections is likely to 

stimulate differential driving behavior compared to isolated intersections. (Ozbay & Yanmaz-

Tuzel, 2010), developed models to investigate the impacts of increase in lane width, installation 

of median barriers, and vertical and horizontal improvements in the road alignment on crash 

rates. The research team revealed that the use of random effects and hierarchical model 

structures explained better spatial and temporal effects in the crash rate. It was further shown that 

individual crash reduction factors indicated a decrease in crash rates after the specific treatment 

is applied. In case of limited data availability, it was shown that Bayesian models with spatial 

structures are likely to reduce biasness in model parameters. 

(Arthur, 2015), identified the existence of spatial autocorrelation based on Moran’s I 

statistics applied on neighboring network intersections. To be able to apply the concepts of 

spatial autocorrelation on intersections as opposed to network roadway segments, the analysis 

considered the roadways as links and the intersections and the adjusted frequencies of collisions 

as areas. The Moran’s I statistics values indicated the existence of clusters of collision 

frequencies while graphing these values identified a temporal fluctuation that follows a diurnal 

pattern which indicates clustering patterns. It was also revealed that daytime pattern suggests a 
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high frequency of collisions on major arteries during the day, especially over rush hour where it 

would be reasonable to assume a more clustered pattern.  

(Wang & Kockelman, 2013), used Poisson-based multivariate conditional autoregressive 

(CAR) models estimated by Bayesian Markov Chain Monte Carlo methods to examine the 

relationship between pedestrian crash counts across tracts areas and various attributes 

characterizing the network, land use and demography. The results indicated the existence of 

positive spatial autocorrelation across neighborhoods as a result of the existence of latent 

heterogeneity or missing variables that trend in space which are likely to generate spatial 

clustering of crash counts. In addition to spatial autocorrelation identification, their results also 

showed that there is a greater association of residences and commercial land uses with pedestrian 

crash risk across different severity levels due to high potential conflicts between pedestrian and 

vehicle movements. 

(Miaou & Song, 2005), used a multivariate spatial Generalized Linear Mixed Model 

(GLMM) to model crashes by injury severity type simultaneously and to rank sites by crash cost 

rate as decision parameter in ranking. Ranking results were based on relative standards which 

imply that rank and select among a predetermined group of sites based on their relative risk 

levels. The results showed including spatial effects components in modeling processes improved 

the overall goodness-of-fit performance of the model and affected the ranking results for site 

improvements. Ramos, 2014 used a simultaneous equation modeling for crash rate of freeway 

segments to account for unobserved variables. Spatial effects have also been investigated in 

connection to travel demand models (Kwigizile, 2007). The results further revealed that 

including CAR model in modeling process accounts for the degree of overdispersion. 
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2.1.0 Summary 

The aforementioned review shows that crash frequency exhibit autocorrelation in space 

which in this case is called spatial autocorrelation (also known as second degree spatial effects). 

A number of research activities have been conducted to investigate the existence of spatially 

correlated crash frequency on arterials on particular for closely spaced signalized intersections 

and along areas located between intersections known as midblock.  

However, other areas along the road network are likely to exhibit spatial autocorrelation. 

One of these areas has been observed for freeway segments which share an arbitrary border. This 

is because there shared unobserved heterogeneity which are likely to propagate from one area to 

the next and may influence crash occurrence in the same trend. This implies that segments 

sharing border exhibit spatial autocorrelation property in such a way high values of crash 

frequency are found near other values of crash frequency leading to positive spatial 

autocorrelation or high values found near low values leading to negative spatial autocorrelation. 

This study investigates the existence of spatial autocorrelation in crash frequency for 

abutting freeway segments and builds a spatial model which incorporates spatial effects terms. 

This is important in safety prediction models which assume the existence of spatial dependence 

in the response variables and which intends to obtain unbiased and consistence estimators. 
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CHAPTER 3 METHODOLOGY: MULTILEVEL COUNT MODEL 

3.0 Introduction 

The term multilevel is used to refer to analysis models for hierarchically structured data 

with variables defined at all levels of the hierarchy (Schnabel, Little, & Baumert, 2000); 

Raudenbush & Bryk, 2002).  It offers a method of decomposing various sources of variability in 

the response variable. Due to the hierarchical nature and the existence of levels resulting from 

clustering (grouping) of individuals at higher levels, multilevel models are appropriate when 

researcher interests include the requirement to decompose various sources of variability in the 

response.  

As aforementioned, clustered data arise when units of observations form groups (Dobson, 

2002; Faraway, 2006; Scott, Simonoff, & Marx, 2013; Snijders & Bosker, 1999; West, Welch, & 

Gatecki, 2007; University of Bristol, 2015). Each group is known as a cluster (West et al. 2007) 

and observations within each cluster are known as units of analysis. Models designed to analyze 

such data structure are called multilevel models because the units of analysis forms the lowest 

level of the hierarchical structure termed as level 1 and successive groups forms the higher 

levels. For clarity and referring to the context of this research, consider Figure 9 below which 

represents a freeway segment as a stretch between ramps and within such a segment, sensors are 

located specifically for counting the number of vehicles within two different subsections: 

subsection 1-2 (for sensor A) and subsection 2-3 (for sensor B). 



www.manaraa.com

 

37 

 

 
Figure 9: Multilevel structure within a freeway segment 

 

In Figure 9, through vehicles are counted at sensor A and entering vehicles at section 1 

are counted by sensor B in addition to through vehicles approaching the exit and gore areas. The 

two subsections 1-2 and 2-3 are located within a freeway segment between entrance at point 1 

and exit at point 3. In the context of multilevel structure, the subsections form units of analysis 

and the freeway segments between points 1 and 2 forms a cluster. At the subsections, traffic 

characteristics and crashes are observed. The traffic characteristics are total traffic volumes and 

average vehicular speeds. At the cluster level (level 2) human factors and freeway geometric 

elements characteristics are observed including number of lanes, right shoulder, median shoulder 

and segment length. It should be noted that, with the exception of the total number of lanes, other 

geometric elements can be characteristic of the level 1 because they can be observed at the 

subsection level.  

In multilevel language, characteristics formed at level 2 are called contextual variables 

and their effects on crash frequency observed at level 1 are called contextual effects (University 

of Bristol, 2015). For a freeway facility, it is expected that there are more segments and in each 

segment, two or three subsections are formed and sensors are spatially distributed across these 

subsections for counting volumes. In terms of segments, it is obvious that crashes which occur in 

the same segment are likely to have been generated by the same chain of causes attributed to 
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local conditions such as intensity of lane changes as indicated by a weaving segment in Figure 9, 

segment overall geometry, and pavement rate of deterioration. However, depending on the type 

of a segment (weaving Vs non-weaving segment), crash occurrence across these segments are 

likely to be attributed to different causes as a function of local conditions in a particular segment.  

The idea behind multilevel modeling is to aid a researcher in assessing the effects of 

higher level characteristics on the intercepts and coefficients at the lowest levels (Garson, 2013). 

This is possible by controlling for the effect of dependence on inferential statistics and at the 

same time be able to account for the cluster-specific effects. My focus in this study looks at the 

level 2 characteristics (geometric characteristics) and their effects on crash frequency while 

accounting for the cluster-specific effects. A unit diagram which represents the structure shown 

by Figure 10 is given below: 

 

 
Figure 10: Unit diagram for the underlying structure of Figure 9 

 

Information contained in a unit diagram can be expressed in a multilevel equation set up 

as follows: 

𝐸(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑈𝑖𝑗) =  𝛽0 +  𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑗 … + 𝑈𝑜𝑗  + 𝑈1𝑗𝑥1𝑖𝑗                                                               (1) 
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From equation (1), 𝛽0 is the overall average of cash frequency across all groups. The average 

crash frequency for cluster j (or segment j) is given as 𝛽0 +  𝑈𝑜𝑗 where 𝑈𝑜𝑗 denotes the cluster-

effect residuals also known random effects (Scott, M.A et al, 2013). 𝑥2𝑗  denote geometric 

element characteristics at the cluster level and  𝛽2 is the effect of such characteristics on the 

average crash frequency. In my introduction, speficically in Figures 1 and 2, I indicated that two 

segments are likely to have different impacts on crash event occurrency due to differential 

characteristics which are local to the specific segments. Therefore, equation (1) captures such 

effect by allowing level 1 characteristics to vary across segments. This is shown by the term 

𝑈1𝑗𝑥1𝑖𝑗 where in addition to the fixed effect 𝛽1 of the variable 𝑥1𝑖𝑗, the same variable is allowed 

to vary and its variance is captured by the random effect 𝑈1𝑗. Furthermore, equation (1) indicates 

that between-cluster variance varies as a function the variable with a random coefficient. This 

implies level 1 variance can be expressed in terms of variable 𝑥1𝑖𝑗 as follows: 

𝑣𝑎𝑟 (𝑈0𝑗 + 𝑈1𝑗𝑥𝑖𝑗) =  𝜎2
𝑢0 + 2𝜎𝑢𝑜1𝑥𝑖𝑗 +  𝜎2

𝑢1𝑥2
𝑖𝑗                                                                          (2)  

where  𝜎𝑢0 and 𝜎𝑢1 are the respective variances of the random effects 𝑈01 and 𝑈1𝑗 and 𝜎𝑢01 is 

the covariance between random effects. Random effects are assumed to be normally distributed 

with mean zero and variances as shown above. Since they have a distribution and represent 

unobserved cluster-specific, they are estimated along with the fixed effects parameters. 

The above set up introduces a detailed concept, in a single equation set up, behind multilevel 

models. Specific cases for count models in particular Poisson and Negative binomial regression 

models have extra terms which captures the effects of overdispersion in addition to the above 

concepts. Section 3.1 specifically deals with these models in a multilevel setting and sections 3.2 

and 3.3 describe their specification and estimation in a matrix format. 
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3.1 Multilevel count model 

3.1.1 General review 

Occurrence of a crash has been determined to be a Bernoulli trial and a series of these 

trials can be described by the binomial distribution (Lord, Washington, and Ivan, 2005; 

Mulokozi & Teng, 2014). Researchers investigating the occurrence of crashes frequently use 

Poisson regression model (Navidi, 2011, Ross, 2010) because Poisson random variable may be 

used to approximate a binomial random variable. Based on Poisson model, the mean parameter is 

allowed to depend on regressors and such dependence is assumed to be parametrically exact with 

no other sources of random variation (Cameron & Trivedi, 2013; Agresti, 2002).  

However, the Poisson process on which the standard model is based may fail due to the 

existence of unobserved heterogeneity across sites contributing additional randomness leading to 

the data exhibiting overdispersion (Mitra & Washington, 2007; Hauer, 2001; Nshankar & 

Sittikariya, 2014; Sittikariya, 2006; and Washington, Karlaftis, & Mannering, 2011). The extra-

Poisson variation encountered due to unobserved heterogeneity is allowed by introducing in the 

model a multiplicative heterogeneity error term leading to mixed models such as negative 

binomial – a two parameter model flexible to account for extra-variation and which is obtained 

by integrating out the heterogeneity term in the Poisson-Gamma model. 

When observed counts are considered as clusters, analytical approach should consider the 

possibility of dependence within clustered crash counts (Abdel-Aty & Huang, 2010; Karlaftis & 

Tarko, 1998) as well as the effects of higher levels on the regression coefficients at the lowest 

levels. Correlation within clusters may be due to variation being induced by common unobserved 

cluster-specific factors. Ignoring cluster-effects increases the likelihood in drawing conclusion 

based on unrealistic inferences because estimator standard errors are likely to be underestimated 
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and the usual conditional mean is no longer correctly specified (Centre for Multilevel modeling, 

2014; Cameron & Trivedi, 2013). Based on these concepts four count models are compared: two 

are standard Poisson and negative binomial regression models which do not account for cluster-

effects while the other two are Mixed-effects Poisson and negative binomial regression models 

which in addition to fixed-effects parts account for the effects of randomness arising from 

heterogeneity and clustering. The mixed-effects models are estimated by Gauss-Hermite 

quadrature method because the distributions assumed for unobserved heterogeneity and cluster-

effects are different and these have to be integrated out of the conditional mean (Stata, 2011). 

 

3.1.2 Specification 

The model specifies that 𝑦𝑖 crashes for a freeway subsection 𝑖 given 𝒙𝑖 geometric and traffic 

characteristics are Poisson distributed with the likelihood function given as (Mulokozi et al, 

2015): 

𝑓(𝑦𝑖|𝒙𝑖) =  
𝑒𝜇𝑖𝜇𝑦𝑖

𝑖

𝑦𝑖!
                                                                                                                                     (3) 

The conditional mean crash frequencies is modeled as a function of the observed geometric and 

traffic characteristics known to influence the occurrence of crashes and it is given through the 

natural logarithm of the exponential mean function of the Poisson as: 

ln(𝐸(𝑦𝑖|𝒙𝑖)) = ln(𝜇𝑖) = 𝒙′
𝑖𝜷                                                                                                                   (4) 

The set of characteristics observed measures subsection heterogeneity in the mean crash 

frequency. However, still there is unexplained heterogeneity in the mean crash frequency 

because of unmeasured factors and to account for unobserved heterogeneity a multiplicative term 
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𝑣𝑖 is introduced in Model 4 (Cameron & Trivedi, 2013), (Veeraragavan & Dinu, 2011). Inclusion 

of a multiplicative unobserved heterogeneity results in the following function: 

ln(𝐸(𝑦𝑖|𝒙𝑖 , 𝑣𝑖)) = ln(𝜇𝑖𝑣𝑖) =  𝛽∗ +  𝑥1𝑖
′𝜷                                                                                          (5)  

where, 

𝛽∗ =  𝛽0 + ln(𝑣𝑖)                                                                                                                                         (6) 

𝑣𝑖  ~ Gamma (1, 𝜎𝑣𝑖

2) 

From Equation 6 it is clear that a multiplicative heterogeneity is equivalent to a random 

intercept model, because 𝑣𝑖 enters the model through the random intercept term. This implies 

that Model 5 comprises of an intercept which varies across independent crash counts and it can 

be interpreted as a one-level hierarchical model. However, our dataset has two levels. Level 1 

has observational units as subsections defining the locations of sensors (FAST, 2014). Observed 

crash counts and their influencing geometric and traffic characteristics were recorded from these 

subsections. The subsections are nested within Level 2 which is made up of weaving and non-

weaving segments treated as clusters. Our interest is to control for unobserved random effects of 

a segment type on the predicted average crash counts while controlling for geometric and traffic 

characteristics of the subsections. Therefore we include random cluster effects while controlling 

Level 1 factors and this is leading to a two-level hierarchical model for clustered data. For a 

series of M independent clusters (segments in this study) and conditional on the random cluster 

effects 𝑼𝑗, a model with covariates at two levels can be written as (Diggle, Heagerty, Liang, & 

Zeg, 2002): 

ln (𝐸(𝑦𝑖𝑗|𝒙𝑖𝑗 , 𝑼𝑗)) = ln(𝜇𝑖) =  𝑿𝑖𝑗𝜷 +  𝒁𝑖𝑗𝑼𝑗                                                                                     (7) 

for subsections 𝑖 = 1, … … . , 𝑛𝑗 , in segments 𝑗 = 1, … … … . , 𝑀.  𝑿𝑖𝑗 is the row vector of 

covariates for fixed effects with fixed effects regression coefficients 𝜷; 𝒁𝑖𝑗 is the row vector of 
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covariates corresponding to the random effects and can be used to represent both random 

intercepts and random coefficients and 𝑦𝑖𝑗 represents the crash counts. The random effects 𝑈𝑗 are 

multivariate normally distributed with mean 0 and variance-covariance matrix 𝚺.  

The presence of unobserved heterogeneity term and cluster-random effects induce 

overdispersion in the conditional mean crash frequencies of the Poisson regression model leading 

to the variance exceeding the mean. Unlike Poisson regression model, negative binomial 

regression model is a two parameter model which is an alternative to overdispersed Poisson 

model since its variance is a function of the mean crash frequency. The negative binomial model 

assumes that crash counts are Poisson distributed and unobserved heterogeneity resulting from 

unobserved factors are gamma distributed. The distribution function of the negative binomial for 

cluster j , j = 1,….., M can be written as (Stata, 2011; Hilbe, 2011): 

𝑓(𝑦𝑖|𝑈𝑗  , 𝛼) =  
Γ(𝑦𝑖𝑗 + 𝑟)

Γ(𝑦𝑖𝑗 + 1)Γ(𝑟)
 𝑝𝑟

𝑖𝑗
 (1 − 𝑝𝑖𝑗)𝑦𝑖𝑗                                                                                   (8) 

𝑟 = 1/𝛼 ,     𝑝𝑖𝑗 =  
1

1+𝛼𝜇𝑖𝑗
 

The conditional mean function for Model 8 is the same as indicated in Model 4. The marginal 

dispersion expressed as a function of both the dispersion parameters can be written as: 

𝑉𝑎𝑟(𝑦𝑖𝑗) = [1 + {exp(𝜎2) (1 + 𝛼) − 1}𝐸(𝑦𝑖𝑗)]𝐸(𝑦𝑖𝑗)                                                                     (9) 

𝜎2 in Equation 8 represents the vector of unique elements of the variance-covariance matrix 𝚺 

and 𝛼 is the dispersion parameter. The values of both 𝛼 and 𝜎2 reduces to alternative forms of 

count models. If the value of 𝜎2 = 0, the dispersion reduces to that of a standard negative 

binomial while if 𝛼 = 0, the dispersion reduces to that of a two-level random intercept Poisson 

model (Anders & Sophia, 2012). Furthermore, replacing the values of r and  𝑝𝑖𝑗  in Equation 8 

above, gives the conditional log-likelihood function which can be written as: 
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𝑙 𝑛 (𝑓(𝑦𝑖|𝑈𝑗  , 𝛼)) = 𝑒𝑥𝑝 [∑ {𝑙𝑛 (
Γ(𝑦𝑖𝑗+𝑟)

Γ(𝑦𝑖𝑗+1)Γ(𝑟)
) −

1

𝛼
 𝑙𝑛(1 + 𝛼𝜇𝑖𝑗) + 𝑦𝑖𝑗𝑙𝑛 (

𝛼𝜇𝑖𝑗

1+𝛼𝜇𝑖𝑗
)}

𝑛𝑖𝑗

𝑖=1 ]                          (10)             

𝜇𝑖𝑗 is the linear predictor given by equation (5) which further assumes that random effects are 

multivariate normally distributed with zero mean and variance matrix Σ. The probability density 

function of the random effects is given as: 

𝑓𝑈𝑗
=  

1

√(2Π)𝐾|Σ|
exp (−

1

2
(𝑈𝑗)

′
𝛴−1(𝑈𝑗))                                                                                       (11) 

The likelihood contribution for the j
th

 cluster is obtained by marginalizing the random effect out 

of the joint density function  𝑓(𝑦𝑗, 𝑈𝑗, 𝛼). The resulting outcome in this operation is the marginal 

likelihood function given as: 

ℒ𝑗(𝛽, Σ, 𝛼) =  (2𝜋)−(
𝑞
2

) |Σ|−(
1
2

) ∫ exp {𝑓(𝑦𝑗|𝑈𝑗 , 𝛼) −  
𝑈𝑗

′Σ−1𝑈𝑗

2
} 𝑑𝑢                                          (12) 

The log likelihood for the entire dataset is the sum of the contributions of the log-likelihood 

functions for the M individual clusters.  

 

3.1.3 Estimation 

Estimation of hierarchical models means obtaining maximum likelihood (ML) estimates 

which maximizes the likelihood of the given data. In the context of multilevel models and in 

particular non-linear model, the end results require a two-step procedure: (1) finding the 

likelihood by integration techniques and (2) maximizing the resulting likelihood function. The 

following text describes these two procedures by first explaining the parameters of interest. 
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3.1.3.0 Parameters of interest 

As indicated by the LHS of equation (7), the parameters of interest are the regression 

coefficients contained in the matrix 𝛽, variance components in the matrix Σ where the diagonal 

elements are the variances of the random effects for the between-group variability and variances 

for the covariates which are allowed to vary, and the overdispersion parameter to characterize 

boundary conditions between appropriateness of the Poisson and negative binomial regression 

models. The elements in the matrix 𝛽 constitute the fixed part of the model by estimating fixed 

parameter estimates. The variance parameters come from the fact that each segment has its own 

intercept and the cluster variability can be captured in each segment which is allowed to vary. 

For instance, consider the following model: 

log 𝜇𝑖𝑗 =  𝛽0 +  + 𝛽1 𝑒𝑛𝑒𝑥𝑖𝑗 + 𝑢01𝑗 + 𝑢1𝑗 𝑒𝑛𝑒𝑥𝑖𝑗                                                                                            (13) 

Equation (13) implies that in addition to the between-segment variance captured by the cluster 

random effects 𝑢01𝑗, the type of segment variable (enex) is also allowed to vary and its residuals 

(random effects) are captured by 𝑢1𝑗. By allowing variability across segment types, then we term 

the variable “enex” a random parameter and in addition to its fixed parameter part estimated 

value 𝛽𝑒𝑛𝑒𝑥̂, we also estimate the variance to characterize random part identified as 𝜎𝑢(𝑒𝑛𝑒𝑥)
2 .  

Such a matrix, where Σ =  Ω𝑢 , can be specified as follows: 

 (
𝑢01𝑗

𝑢4𝑗
) ~ 𝑀𝑉𝑁(0 Ω𝑢) ,     𝟎 =  (

0
0

) ,  Ω𝑢 =  (
𝜎𝑢01

2 0

0 𝜎𝑢1(𝑒𝑛𝑒𝑥)
2)                                                         (14) 

In equation (14), 𝜎𝑢01
2 is the between-cluster variance while 𝜎𝑢1(𝑒𝑛𝑒𝑥)

2 is the variance of the 

random parameter which in this case is the type of segment. The off diagonal elements of the 

matrix  Ω𝑢 are the covariances of the respective residuals. By assuming these parameters to be 

zero, the model introduces constraints on the variance-covariance structures and the matrix 
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formed is called the variance components or the diagonal matrix. The size of the matrix Σ 

depends on the number of variables in the model and in this study, median shoulder, right 

shoulder and segment length are treated as random parameters in addition to their fixed parts. 

Another parameter of interest is the overdispersion parameter, 𝛼 which helps to decide the 

appropriate model between Poisson and Negative binomial.  

 

3.1.3.1 Estimating Parameters of interest 

Estimation process entails obtaining the parameters of interest aforementioned such that 

the log likelihood function in equation (12) is maximized. In this case, the maximization is 

performed with respect to the model regression coefficients and the dispersion parameters which 

accounts for the cluster effects as well as the overdispersion. When such a condition to produce 

the maximum likelihood function is met, then the values of the parameters of interest achieved at 

this point are the optimum values which can be used for further inferences. However, discrete 

models such as count models have non-normal response at level 1 sampling model while higher 

levels involve multivariate normal assumptions (Raudenbush & Bryk, 2002), which in turn limits 

conventional estimation theory. To demosntrate this complexity consider the following system of 

equations where vehicular traffic volume is defined at level 1 while number of lanes is defined at 

the cluster-level which in this study, a cluster is a freeway segment: 

Level 1: log 𝜇𝑖𝑗 =  𝛽0𝑗 +  + 𝛽1𝑗 (𝑣𝑜𝑙𝑢𝑚𝑒)𝑖𝑗                                                                                                     (15) 

Level 2: 𝛽0𝑗 =  𝛾00 +  + 𝛾01 (𝑙𝑎𝑛𝑒𝑠)𝑗 + 𝑢0𝑗                                                                                                    (16) 

               𝛽1𝑗 =  𝛾10 +  + 𝛾11 (𝑙𝑎𝑛𝑒𝑠)𝑗 +  𝑢1𝑗                                                                                                   (17) 

As it can be seen from the system of equations shown above, at level 1, our response variable 

represents counts which are modeled as the natural logarithm of crash frequency as a link 
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function in addition to non-normal data. Since the regression coefficients 𝛽0𝑗 and  𝛽1𝑗 vary across 

clusters, a contextual variable – the number of lanes – is specified at level 2 to account for such 

variation. However, equations 16 and 17 models a continuous response in addition to the random 

effects 𝑢0𝑗 and 𝑢1𝑗 which represents deviations of the cluster regression coefficients from their 

overall crash frequency average. By substituting equations from level 2 into level 1 equation, the 

following combined equation results: 

ln(𝜇𝑖𝑗) =  𝛾00 +  𝛾10 (𝑣𝑜𝑙𝑢𝑚𝑒)𝑖𝑗 + 𝛾01 (𝑙𝑎𝑛𝑒𝑠)𝑗 + 𝛾11 (𝑣𝑜𝑙𝑢𝑚𝑒)𝑖𝑗(𝑙𝑎𝑛𝑒𝑠)𝑗 + 𝑢0𝑗 +

 𝑢1𝑗  (𝑣𝑜𝑙𝑢𝑚𝑒)𝑖𝑗                                                                                                                                              (18)  

Equation 15, is appropriate under the following assumptions: 

𝐸 [
𝑢0𝑗

𝑢1𝑗
] =  [

0
0

] 

𝑉𝑎𝑟 [
𝑢0𝑗

𝑢1𝑗
] =  [

𝜏00 𝜏01

𝜏10 𝜏11
] =   Ω𝑢  

𝜏10 𝑎𝑛𝑑 𝜏01 are covariance parameters while 𝜏00 𝑎𝑛𝑑 𝜏11 are variance parameters. These 

parameters are the same as what is indicated in equation 14. 

Equation 18 is a mixed-effect model with both fixed and random effects. To this point, it should 

be understood that fitting mixed-effects models require integrating out the random effects 

because they are unobserved. This implies that the resulting likelihood function is unconditional 

(also called marginal likelihood function) which does not involve 𝑈𝑗. This step involves the first 

stage towards obtaining likelihood function of the model. Using notations from equations 8 to 

10, the following joint distribution function can be obtained: 

𝑔(𝑌, 𝑈/𝜔) = 𝑓(𝑌/𝑈, 𝜔)𝑓𝑈                                                                                                                        (19) 

From Equation 19, 𝑔(𝑌, 𝑈/𝜔) is the joint distribution of the crash frequency and random effects 

vectors, 𝑓(𝑌/𝑈, 𝜔) is the probability distribution of the crash frequency at level 1 given the 
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random effects and parameters of interest while 𝑓𝑈  is the probability distribution of the random 

effects given the parameters of interest. The likelihood of the data given the parameters of 

interest 𝜔 is the marginal density of the crash frequency vector, Y. This is equivalent to 

integrating the joint function in equation over the space of the random effects and the following 

likelihood function results: 

𝐿(𝑌/𝜔) = ∫ 𝑓(𝑌/𝑈, 𝜔) 𝑓𝑈                                                                                                                        (20) 

The RHS of equation (20) which is equivalent to equation 10 for negative binomial model cannot 

be evaluated analytically and therefore numerical integration techniques are employed. One 

widely used modern method to directly estimate the integral required to calculate the log-

likelihood is by using Gauss-Hermite quadrature. This is due to non-closed form of equation (20) 

where the prior distributions are not conjugate priors. For estimating model 20, the probability 

distribution of the random effects is approximated by a discrete distribution with q integrating 

quadrature points. This method permits likelihood ratio tests for comparing nested models and 

minimizing bias. 

 

3.1.4 Inference 

Inferences for the mixed effects model focuses on the fixed effect parameters and the 

covariance parameters which are contained in the model. To achieve this likelihood-based 

statistics are employed which include Wald statistic computed as the parameter estimate divided 

by its asymptotic standard error. The asymptotic standard errors are computed from the inverse 

of the second derivative matrix of the likelihood with respect to each of the covariance 
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parameters. Wald statistics evaluates the significance of individual regression coefficients and it 

is given as: 

𝑊𝑎𝑙𝑑 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
𝛽̂𝑗

𝑆𝐸𝛽̂𝐽

                                                                                                                          (21) 

In case of nested models, a chi-square test statistic can be employed which compares full  

to a reduced model and a selected p-value is used as a cut off value for assessing significance of 

omitted model characteristics. If ℒ1is the log-likelihood value associated with the full model and 

ℒ0 is the log-likelihood value associated with the constrained or reduced model, the test statistic 

of the likelihood ratio test is given as: 

𝐿𝑅 − 2(ℒ1 −  ℒ0)                                                                                                                                       (22) 

If the constrained model is true, then the LR is approximately 𝜒2 distributed with 𝑑0 −  𝑑1 

degrees of freedom associated with the reduced and constrained models respectively. Other 

evaluation techniques in addition to likelihood ratio tests are the Akaike and Bayesian 

Information criteria. These are based on log-likelihood function with adjustment for the number 

of parameters estimated and for the amount of data (Dobson, 2002). The Akaike Information 

Criterion is given as: 

𝐴𝐼𝐶 =  −2𝑙𝑛ℒ + 2𝑘                                                                                                                                  (23) 

while the Bayesian Information Criterion is given as: 

𝐵𝐼𝐶 =  −2𝑙𝑛ℒ + 𝑘𝑙𝑛𝑁                                                                                                                             (24) 

In both cases of equations 23 & 24, 𝑙𝑛ℒ is the maximized log-likelihood function of the model 

and 𝑘 is the number of parameters estimated.  

Assessing between Poisson and Negative binomial is based on the inference made on the 

dispersion parameter which quantifies the variability due to heterogeneity across freeway 
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segments. If the dispersion parameter equals zero, the model reduces to the simpler Poisson 

model while if the dispersion is greater than zero the crash frequency is over-dispersed and 

negative binomial regression model can be employed for over-dispersed data. The dispersion 

parameter is also evaluated based on the likelihood ratio test statistics. Based on this approach I 

evaluated four models: traditional Poisson regression (PO) and Mixed-effects Poisson model 

(ME PO) as well as traditional negative binomial (NB) and Mixed-effects negative binomial 

(ME NB).  
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CHAPTER 4 METHODOLOGY: BAYESIAN SPATIAL MODEL 

4.0 Introduction 

Spatial data arise when observed units have locational component (LeSage, 1999). In this 

case, spatial dependence between the observations and spatial heterogeneity in the relationship 

being modeled are the problems expected. Spatial dependence is characterized by the Tobler’s 

law (Tobler, 1979) which states that “Everything is related to everything else, but near things are 

more related than distant things”. Two types of spatial dependence can occur: (1) positive spatial 

dependence are such that high values of a variable cluster in space, and (2) negative spatial 

dependence occurs when locations are surrounded by neighbors with very dissimilar values of 

the same variable. 

Spatial dependence modeling requires an appropriate representation of spatial 

arrangement of observed areal units. In this case, relative spatial positions are represented by 

spatial weight matrices (Lee, 2011). These matrices can be prepared as either inverse distance 

weights matrices or binary contiguity weights matrices. This study adopts the latter type of 

matrices, binary contiguity weights matrices, which reflects the relative position in space of one 

unit of observation to other units by creating a matrix with ones and zeros whereby a matrix 

element is coded as one if two areal units share a common border and zero otherwise. In terms of 

spatial dependence, it is expected that neighboring units should exhibit a higher degree of spatial 

dependence than units located far apart. To demonstrate such coding processes consider the 

following arrangement of freeway segments represented here as a line diagram (Figure 11): 
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Figure 11: Line diagram representation of freeway segments for contiguity weight matrix 

 

Based on the arrangement of segments shown in Figure 11, the following binary contiguity 

matrix can be constructed for segments s1, s2 and s3: 

𝑊 =  [
0 1 0
1 0 1
0 1 0

]                                                                                                                                       (25) 

In the matrix above columns and rows are arranged to correspond with the arrangement of 

freeway segments as observed in the field. For instant, with the arrangement shown in Figure 11, 

freeway segment s1 corresponds to the first element in the matrix identified by the first column 

and first row. The above matrix controls spatial dependence structure of the random effects 

relating to geographically adjacent areas to be highly correlated while non-contiguous segments 

are conditionally independent given the values of the remaining random effects. The spatial 

weight matrix is then incorporated in Conditional Autoregressive models as explained in the 

section 4.1.2 of spatial model specification. 

Another building block for appropriate using spatial models is the concept of Bayesian 

modeling techniques which is based on Bayes’ theorem whereby posterior means are computed 

as the function of the data likelihood and priors. The model naturally identifies hierarchy since 

priors are being used to get posterior means (Dobson et al, 2008). Section 4.1 covers these 

concepts in a context of spatial models. 
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4.1 Bayesian Spatial Models for crash frequency 

4.1.1 General review 

A spatial phenomenon by which crash frequency values for contiguous roadway 

segments tend to be more similar or dissimilar constitute the concept of spatial autocorrelation 

(Flahaut, Mouchart, Martin, & Thoma, 2003; Hepple, 2009). Similar values of crash frequency 

across contiguous locations lead to positive autocorrelation and this occurs when the level of co-

variation is higher than expected. Dissimilar values on the other hand result in negative 

autocorrelation when the level of covariation is such that higher crash frequency values are 

contiguous with low crash frequency values. The absence of spatial autocorrelation implies lack 

of significant positive or negative autocorrelation. 

The distribution of the crash frequency in the context of a Generalized Linear Model can 

be described by a Poisson model (Noland & Quddus, 2004; Quddus, 2008) which is a member of 

the exponential family of distributions (Agresti, 2002; Dobson, 2002). Poisson model transforms 

the mean of the crash frequency to the natural parameter of a Poisson GLM. Such a 

transformation leads to a canonical link which facilitates modeling the natural logarithm of the 

mean of the crash frequency. The existence of spatial pattern in crash frequency can be modeled 

by a set of influencing factors including geometric elements of the freeways, traffic 

characteristics, and environmental factors as well as human factors and random effects which 

accounts for the possible effects of over-dispersion.  

However, it is likely that not all the accounted factors in the modeling process fully 

explain spatial pattern in the crash frequency. In this case, Conditional Autoregressive Models 

(Aguero-Valverde, 2014; Aguero-Valverde, 2013) are specified to account for remaining spatial 

effects leading to residual autocorrelation in the crash frequency. CAR models contain a 
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precision matrix to control the spatial autocorrelation structure of the random effects based on 

the weight matrix. Contiguity of freeway segments can be specified in the model by a binary 

coding where a code equals to 1 if the freeway segments share a common border and is zero 

otherwise. A spatial autocorrelation parameter with variance equals 𝜏2 is used to indicate the 

amount of autocorrelation in the crash frequency. If this value is significantly different from 0, it 

implies the existence of spatial autocorrelation of crash frequency for contiguous freeway 

segments. 

Estimation of the unknown parameters for the aforementioned models is done in a 

Bayesian framework from which the unknown parameters are set to reflect prior knowledge. 

Specifically, diffuse normal priors are assumed for regression coefficients while uniform priors 

are adopted for random effects. Furthermore, the spatial autocorrelation parameter is assumed to 

have independent priors. Inference is based on Markov Chain Monte Carlo (MCMC) simulation 

using Gibbs and Metropolis steps as sampling techniques for posterior means. To ensure valid 

inference, Markov Chain convergence to the target densities, a specified number of samples is 

applied as a burn-in and thinning is adopted to reduce autocorrelation of neighboring samples. 

This study investigates the existence of spatial autocorrelation on contiguous freeway 

segments with ramps as natural delineators while controlling for traffic and geometric 

characteristics observed using two count models: Non-spatial and Spatial Poisson models. It 

should be noted that the existence of spatial autocorrelation is an indication of the presence of 

unobserved factors unaccounted for which are manifested through the residual spatial 

autocorrelation. To this point it is hypothesized that crash frequency observed in contiguous 

freeway segments exhibit spatial phenomenon leading to spatial autocorrelation and a value of 

the spatial autocorrelation parameter significantly away from 0 is an indication of the existence 
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of spatial phenomenon across adjacent segments. Section 3.0 dealt with general investigation of 

an existence of unobserved heterogeneity. Section 4.1 focuses on the special autocorrelation as a 

special case of unobserved heterogeneity in freeway segments causing crash frequency. 

 

4.1.2 Global Moran’s I Index 

 Identifying the existence of second order spatial effects (spatial autocorrelation) requires 

the use of spatial statistics ( ESRI, 2013) before incorporating spatial effects terms in regression 

modeling process. Spatial statistics help to identify patterns of crash frequency across freeway 

segments. This study uses Moran’s I statistics, an index which incorporates spatial concepts to 

reflect the existence of spatial autocorrelation based on the segment locations and corresponding 

crash frequency. The conceptual models employ the zone of indifference to conceptualize spatial 

relationship and the index is calculated using ArcGIS software as follows: 

𝐼 =  
𝑛

𝑆0
 
∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖

                                                                                                                               (26)  

𝑆0 =  ∑ ∑ 𝑤𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                                                                                                                                       (27) 

From equations (26) and (27), 𝑧𝑖 is the deviations of crash frequency for segment i from its mean 

crash frequency, 𝑤𝑖,𝑗 is the spatial weight between segment i and j, n is the total number of 

segments, and 𝑆𝑜 is the aggregate of all the spatial weights. The z-statistic for the index is given 

as follows: 

𝑍𝐼 =  
𝐼−𝐸[𝐼]

√𝑉[𝐼]
                                                                                                                                                   (28)  

where 𝐸[1] =  
−1

𝑛−1
  is the expected index and its variance is given as:  

𝑉[𝐼] = 𝐸[𝐼2] − 𝐸[𝐼]2 
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Interpretation of the existence of spatial autocorrelation given by the index is based on the values 

of the z-scores and the p-value. This study uses a cut off value for p-value equals to 5% 

significance. In this case, a statistically significant p-value with a positive z-score implies that 

spatial distribution of high crash frequencies and low crash frequencies is more spatially 

clustered than would be expected by the existence of random process. On the other hand a 

statistically significant p-value with a negative z-score indicates the existence of spatially 

dispersed high crash frequencies and low crash frequencies in comparison to random process. 

 

4.1.3 Specification of hierarchical Bayesian model 

Let 𝑦𝑖 denote the number of crashes observed in a freeway segment for the 𝑖𝑡ℎ covariate 

pattern. Let the expected value of 𝑦𝑖 depend on the explanatory variables 𝑥𝑖. The Poisson 

generalized linear model (Guo, Wang, & Abdel-Aty, 2010) with the natural link function in the 

logarithmic function can be specified as: 

𝑙𝑛(𝜇𝑖) =  𝑥𝑖
′𝛽, 𝑖 = 1, … . , 𝑛                                                                                                             (29) 

𝜇𝑖 denotes the expected values of the crash frequency for segment 𝑖,  𝑥𝑖
′ is the matrix of 

observed influencing factors including an intercept, and 𝛽 is the matrix of regression coefficients 

which quantifies the impact of covariates on the expected crash frequency. 

Equation 1 can be used to model spatial pattern in the crash frequency across freeway segments 

via a matrix of the covariates which in this case are the geometric and traffic characteristics 

observed on the freeways. However, the observed crash frequency for Poisson model exhibit 

over-dispersion and to capture this effect, equation 1 can be extended to include random effects, 

∅𝑖 to account for the possible effects of over-dispersion: 

𝑙𝑛(𝜇𝑖) =  𝑥𝑖
′𝛽 +  ∅𝑖, 𝑖 = 1, … . , 𝑛                                                                                                  (30) 
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Under Bayesian modeling frame work, prior distributions for the unknown parameters are set to 

reflect prior knowledge about the parameters of interest (Guo, Wang, & Abdel-Aty, 2010). In 

this case an independent Gaussian prior (diffuse normal priors) is assumed for each regression 

coefficient, 𝛽𝑗  ~ 𝑁(𝑚𝑗 , 𝜈𝑗) with mean, 𝑚𝑗 equals 0 and variance, 𝜈𝑗 necessarily large. Uniform 

priors are assumed for random effects, ∅𝑖 ~ 𝑈(0, 𝜎2) where 𝜎2 ~ 𝑈(0, 𝑀𝜎) with large variance, 

𝑀𝜎. 

It is further assumed that there exist second order spatial effects (Bolstad, 2005; Gelman, Carlin, 

Stern, & Dunson, 2014) unaccounted for by the covariates and specify a Conditional 

Autoregressive Priors (Lee, 2011; Kery, 2010): 

∅𝑘|∅−𝑘 ~ 𝑁 (
𝜌 ∑ 𝑤𝑘𝑖∅𝑖

𝑛
𝑖=1

𝜌 ∑ 𝑤𝑘𝑖 + 1 − 𝑝𝑛
𝑖=1

,
𝜏2

𝜌 ∑ 𝑤𝑘𝑖 + 1 − 𝜌𝑛
𝑖=1

)                                                                 (31) 

Equation 3 is a special case of the Gaussian Markov random field which contains a precision 

matrix to control the spatial autocorrelation structure of the random effects based on the weight 

matrix 𝑊. Contiguity of freeway segments can be specified in the model by a binary coding 

where 𝑤𝑘𝑗 = 1 if the freeway segments share a common border and is zero otherwise. 𝜌 is a 

spatial autocorrelation parameter with variance equals 𝜏2. If the value of 𝜌 is significantly 

different from 0, it implies the existence of spatial autocorrelation of crash frequency for 

contiguous freeway segments. Both 𝜌 and its variance parameter, 𝜏2 have an independent prior 

specified as follows: 

Spatial autocorrelation: 𝜌 ~ 𝑈 (0,1);  

𝜏2 ~ 𝑈 (0, 𝑀𝜏)                                                                                                                                            (32) 

Decision to adopting equation 31 is based on the appealing fact that (Kery, 2010) 

conducted a comparative research and identified that the random effects modeled by a 
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conditional autoregressive (CAR) prior distribution specified by equation 31 is the best because 

it produces consistently good results across the range of spatial correlation scenarios considered. 

It also represents a range of strong and weak spatial correlation structures with a single set of 

random effects which is beyond the models proposed. 

Inference for the above models is based on Markov Chain Monte Carlo (MCMC) 

simulation (Kery, 2010; Lee, 2011; Dobson, 2002) using a combination of sampling techniques. 

The variance parameters are Gibbs sampled from their full conditional truncated inverse gamma 

distributions, while the remaining parameters are updated using Metropolis steps. An important 

key part of the analysis based on sampling techniques is to be able to make valid inferences. This 

is possible by monitoring markov chain convergence to the target densities. To ensure the 

markov chain lies within the stable area of high likelihood we apply a burn-in of 20,000 samples 

to ensure that the samples drawn from the chains approximate the posterior distribution. A 

thinning equal to 10 is applied to reduce autocorrelation of neighboring samples (Dobson, 2002). 

The results of convergence are monitored for stable posterior distributions based on trace plots 

and posterior densities of covariates. 

To estimate the specified models CARBayes package is applied in an R software 

environment (Lee D. , 2014) and WINBUGS version 1.4.3. Choosing the most parsimonious 

model is based on the Deviance information criterion (DIC), which is a generalization of Akaike 

Information Criterion (AIC) for Bayesian models. Evaluation of the significance of estimated 

parameters is based on 95% credible intervals. 
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CHAPTER 5 DATA COLLECTION AND SUMMARY 

5.0 Multilevel count model data 

5.0.1 Data collection approach 

Data used in this study comprised of traffic and geometric characteristics as well as crash 

frequency from the entire freeway network located in the Las Vegas area of Nevada. Traffic 

characteristics included average speed and traffic volumes recorded by inductive loop detector 

and were downloaded from the website managed by the Freeway and Arterial System of 

Transportation (FAST) division which is managed by Regional Transportation Commission of 

Southern Nevada (FAST, 2014). Clustered data were observed at two levels: Level 1 which is 

considered as the lowest level consisted of short stretches of freeways where every sensor 

installed within a given stretch records traffic characteristics and the variables at this level 

constituted only traffic volumes and average speed. Traffic volumes as well as speeds are 

recorded in windows of 15 minutes and to get the total volume, data were aggregated for every 

month and then summed for 12 months to obtain yearly volumes. However, speed variable 

values were processed as an average. 

To get data at Level 2, natural delineation of the freeways were used, which consisted of 

freeway segments delineated by entrance and exit ramps and this resulted in weaving and non-

weaving segments. Data at this level comprised of geometric characteristics which included the 

right shoulder, median shoulder, base length of the segments, type of segments, and total number 

of lanes. To obtain these segments, ArcGIS (ESRI, 2013) were used to create a GIS shapefile 

which in turn were overlaid on base map for visualization purposes for geometric characteristics. 

The length of our segments, known as the base length (Roess, Prassas, & McShane, 2011; TRB, 
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2010), was taken as the distance between the gore points of the entrance and exit ramps as 

indicated on Figure 12. As indicated in figure 10, EN-EX segments were placed under one group 

of weaving segments and coded accordingly in our dataset to distinguish it with non-weaving 

segments denoted as EX-EN segments. The configuration aforementioned helps to identify the 

variation between weaving and non-weaving segments. Furthermore, observations revealed the 

existence of relatively short segments. Therefore a categorical variable was created to compare 

segments with base length less than 677 meters compared to segments with length greater than 

676 meters. This variable comprised of segments with short base length as indicated in Table 1. 

 

 

    Figure 12 Segments used at Level 2 with base length definition 

 

Using visual aid from both ArcGIS and google earth software, geometric characteristics 

were collected and their characteristics summarized as indicated in Table 1 in section 5.0.2 

 



www.manaraa.com

 

61 

 

5.0.2 Summary statistics 

Table 1 Descriptive Statistics for Multilevel model 

Variable Scale Mean Std. Dev Min. Max. 

Crash frequency Number 3.9846 5.0557 0 48 

Log of traffic volume Natural log 7.2333 0.2361 6.4503 8.1216 

Width of right shoulder Meter 3.6301 1.2562 0.9100 9.1800 

Width of Median shoulder Meter 2.9947 1.1720 0.8300 8.6700 

Segments length  Categorical 0.2385 0.4270 0 1 

Average vehicle speed Miles per hour 75.1039 5.8211 47 81 

Weaving segments Categorical 0.4231 0.4950 0 1 

Through lanes Number 3.4577 0.8532 2 7 

 

It should be noted that to maintain data structure for the proposed model, traffic volumes 

and average speed varied both at Level 1 and 2 while geometric characteristics only varied 

across the weaving and non-weaving segments. Number of crashes in each freeway stretch (at 

Level 1) were visualized and collected from the website managed by the Freeway and Arterial 

System of Transportation (FAST) division and linked with the traffic and geometric 

characteristics. As crash data indicates in Table 1, there is a greater variability within the crash 

frequency which indicates dispersion amounting to 1.268793 (5.055651/3.984615). 

The average mean of the width of right shoulder was observed to be 3.63 meters with variability 

of approximately 1.2 meters while the width of the median was equal to 2.99 meters with a 

standard deviation of 1.1 meters. Descriptive statistics also indicates that there are approximately 

24 percent of the freeway segments which have a relatively short base length. Forty two percent 

of our segments at level two comprised of weaving segments while 58% are non-weaving 

segment. Combining all of the data, we observed 260 freeway stretches where sensors are 
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installed with a minimum number of two stretches and a maximum of four within segments at 

Level 2 and the final modeling tasks retained only significant variables as explained in the 

following section.  

 

5.0.3 Graphical summaries 

In addition to the summary statistics described above, graphical summaries can also help 

as a visualization tool of the observed relationship. 

 

 

Figure 13: Relationship of crash frequency, right shoulder and logarithm of traffic flow 

 

Figure 13 indicates the observed relationship of crash frequency against the right 

shoulder and logarithm of traffic flow plotted in a scatter plot. The upper panel of the graph 

displays distribution of crash frequency across the freeway segments. It is clear from the plot that 
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segments with traffic volume ranges from approximately 6.7 to 7.7 in logarithmic scale 

experienced high crash frequency with an average of 7.3. Furthermore, the plot indicates less 

variability of crashes around the average. The bottom panel displays the relationship of crash 

frequency and the right shoulder in meters. There are concentrations of crashes for segments 

with narrow width of the right shoulder ranging from 2m to 4m, a result which shows the 

existence of negative impacts for narrow shoulders. The upper right corner of the two plots also 

displays the strength of relationship between the aforementioned geometric and traffic features 

with the level of crashes. It is clear that crash frequency is positively correlated with traffic levels 

while there are observed negative correlation between correlation for the right shoulder and crash 

frequency. 

Figure 14 below is a box plot which indicates the distribution of crashes across the 

number of through lanes. The maximum number of lanes observed to have crashes occurred was 

seven although, only one segment was observed and this is not included in the box plot shown 

below. For the remaining segments, the plot indicates differential impacts of the number of lanes 

on crash occurrence across the segments. With the exception of segments with two and six lanes, 

there was an increasing trend in the mean crash frequency as the number of through lanes 

increased from three to five lanes. Crash frequency distribution behavior exhibited across 

segments with two and six lanes indicates the existence of other factors leading to crashes. 
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Figure 14: Distribution of crash frequency across the number of through lanes 

 

Figure 15: Distribution of crashes across segment length 
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 Figure 16: Distribution of crashes across weaving and non-weaving segments 

 

Figure 15 shows the distribution of crash counts across segment lengths. Due to the 

nonlinear nature observed for relationship between crashes and segment lengths, the distribution 

is divided into short and long segments. The short segments considered in this case are segments 

with length equal or less than 0.5 mile while segments with length greater to 0.5 mile were 

considered as long segments. From the figure it can be seen that short segments had the highest 

mean crash frequency when compared to long segments. However, this observation cannot be 

conclusive because many factors interact together to generate the observed crash frequency. In 

this a multivariate model to be estimated and discussed in chapter 6 may reveal different trends 

of influencing factors. 
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Figure 16 above is a box plot which indicates the distribution of crashes across weaving 

and non-weaving segments. The comparative box plots shows that weaving segments had the 

lowest mean crash frequency compared to non-weaving segments while there was high mean 

crash frequency for short segments compared to long segments. However, a closer look of the 

weaving and long segments indicated the existence of few segments with extreme values of crash 

frequency although in general mean crash frequency was low in these areas. These observations 

may indicate the existence of other crash generating factors than the geometry under 

investigation.  

From the above summary and graphical results, it is evident that the occurrence of a crash 

is not influenced by the observed factors only. Other hidden factors are contributing to the 

observed variability in crashes. This can easily be seen from different graphical displays 

particularly the existence of random behavior for some of the geometric factors such as the 

number of lanes and the extreme values of crash frequency observed in the case of weaving and 

long segments contrary to what would be intuitively expected. To spot out these differences 

causing crash frequency variability requires an advanced model to effectively separate variability 

across segment and within individual influencing factors.  

 

5.1 Bayesian spatial model data 

This section requires dataset with a structure focusing on the investigation of a special 

case of unobserved heterogeneity: spatial dependence of crash frequency for contiguous freeway 

segments. The model inputs are traffic and geometric characteristics from contiguous freeway 

segments extracted from loop detectors managed by FAST. Freeway segments which shares a 

common border identified as natural delineation between entrance and exit were considered. 
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Since the purpose is to identify the existence of spatial dependence, contiguous freeway 

segments with missing traffic characteristics were removed from the study and retained only 

segments with all information required. 

Based on the aforementioned criteria, a total of 36 Segments were selected for study. 

Using ArcMap, a polygon shapefile were created for all segments under study with visual aid 

from a base map as a tracing tool. Furthermore, sensor codes with their locations were observed 

from Google maps and matched with the created GIS shapefile of freeway segments and traffic 

characteristics which included vehicular speed and traffic volumes were extracted for each 

sensor located on those segments.  

Geometric characteristics were obtained by changing a GIS shapefile to KMZ and 

overlay the resulting KMZ file on Google earth map for visual aid. Number of lanes, median 

shoulder and right shoulder were observed and measured from the overlaid KMZ file as shown 

on Table 2 which shows summarized data. 

 

Table 2: Descriptive Statistics for Bayesian spatial model 

Variable Scale Mean Std. Dev. Min Max 

crashes Number 57.7778 86.5801 0 411 

Centered width of Log of right shoulder Natural logarithm 0.9969 0.3323 -0.0163 1.6832 

Log of base length of segment Mile 0.6766 0.4409 0.2019 2.5727 

Number of lanes Number 4.3056 1.2833 2 7 

Number of lanes * Log of base length of 

segment Mile 2.7146 1.5166 0.8077 7.7180 

Weaving segment Categorical 0.4167 0.5000 0 1 
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CHAPTER 6 MULTILEVEL COUNT MODEL RESULTS 

6.0 Model structural form assessment 

Multilevel models comprise four count models: two are traditional Poisson and Negative 

binomial models where random effects are not included and two other models included random 

effects terms to account for the possible existence of segment-specific and individual-factors 

effects and both models were estimated based on total of eight factors.  

Traffic characteristics include vehicular speed and traffic flow while geometric 

characteristics include total number of lanes, widths of the right and median shoulders, segment 

length as well as the type of a segment. One of the distribution assumptions of count models, a 

structural relationship function, is that a factor is linearly related to the natural logarithm of the 

expected crash frequency or exponentially related to the expected crash frequency.  

Furthermore, measurement scale may also obscure the significance of a variable under 

investigation or reduce its levels of impact. Issues of measurement scales in this study indicated 

the need for model structural form assessment based on different function forms of the 

influencing factors. As indicated in Table 3, the variable involving traffic flow and segment 

length were found highly significant in the preliminary results with a z-statistic of 10.43 for 

traffic flow and -2.62 for segment length. These values of statistics are an indication of the 

significance in influencing crash occurrence. However, their impacts on the crash frequency 

occurrence are approximately zero for both of them. 
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Table 3: Model set #1 results based on original explanatory variables 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume  0.000 10.43 
 

 0.000 2.18 
 

 0.000 5.57 
 

 0.000 2.95 

Right shoulder -0.193 -7.13 
 

-0.085 -1.93 
 

-0.176 -3.50 
 

-0.146 -2.70 

Seg. base length -0.000       -2.62 
 

-0.000 -1.88 
 

-0.000 -1.58 
 

-0.000 -1.97 

Weaving segments (enex seg.) -0.190 -2.65 
 

-0.341 -2.47 
 

-0.179 -1.29 
 

-0.289 -1.83 

Intercept -1.998 -14.76    1.604 6.37   1.592 5.35    1.754 5.76 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.309 (0.172) 
    

0.206 (0.105) 

Variance - enex seg. (Std. err.)       0.412 (0.099)         0.193 (0.187) 

Model fit criteria 
           

lnL -831.014 
 

-655.203 
 

-620.319 
 

-614.043 

AIC 
 

1672.028 
 

1324.407 
  

1252.64 
 

1244.09 

BIC 
 

1689.831 
 

1349.331 
  

1274.00 
 

1272.57 

Alpha (α) 
      

0.667 
 

0.370 

LR test for α = 0  
      

421.39 (0.000) 
 

-4.06 (0.000) 

LR test Vs PO & NB (p-value)       351.62 (0.000)         15.55 (0.0002) 

 



www.manaraa.com

 

70 

 

 

In order to describe properly data structure, different functional forms were tried by 

transforming the traffic flow and segment length to account for the problems of measurement 

scales. As shown in Figure 16, the relationship of crash frequency and traffic flow in 10
th

 

millions of vehicles grows faster for small number of flow compared to the trending observed 

when the log of traffic flow is related to the crash frequency. Comparing these relationships, the 

logarithmic form of traffic flow is more highly related to the crashes than traffic flow in 10
th

 

mill. of vehicles. This indicates that crashes may likely be linear in logarithmic forms with traffic 

flow.  

 

 

Figure 17: Scatter plot of crashes and traffic flow indifferent functional forms 
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forms of the segment length and traffic flow. For each model set, four count models were 

estimated, two of them without random effects terms and the other two included the random 

effects terms. Table 4 shows different functional forms of the traffic flow and segment length 

and their combination in the estimated model sets. 

 

Table 4: Functional forms 

Model set #   Function forms ad their combination in the model sets 

Model set 1 Traffic flow, segment length 

Model set 2 Traffic flow, log (segment length) 

Model set 3 Log (Traffic flow) , segment length 

Model set 4 Log (Traffic flow), log (segment length) 

Model set 5 Traffic flow in 10mil. Vehicles, segment length 

Model set 6  Traffic volume in 10mil. Vehicles, log(segment length) 

Note: See the appendix for complete functional forms specifications .................................. 

 

Along with the functional forms displayed on Table 4, other variables included in the 

proposed model sets were type of a segment, median shoulder, number of lanes and vehicular 

speed in their transformed forms. Through a successive processing of modeling and account for 

the combined effects of variables to the expected crash frequency, the Wald and overall 

significance tests were conducted to come up with an initial set of significant variables. The 

Wald tests were applied for testing overall significance of explanatory variables on models with 

random effects while the likelihood ratio test were used to test overall significance of the 

regression models on count models without random effects. Based on these tests, only variables 

which revealed a significant combined effect on the expected crash frequency were retained in 

the model sets. 

The six model sets estimated show the effects of different functional forms on the 

regression coefficients and their levels of impacts on the crash frequency. To select the 
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appropriate functional forms which could describe the data set structure observed, selection 

criteria based on Akaike Information and Bayesian Information criteria were applied with the 

requirement that, a model with the smallest information criterion is considered the appropriate 

model. The information criteria are further designed to penalize factors which do not contribute 

to the impact on the expected crash frequency but also they account for the model complexity. 

Tables 5 and 6 show assessment criteria used in evaluating and selecting the appropriate function 

forms. 

 

Table 5: Selection criteria for the six model sets 

Model sets Poisson Model Negative Binomial model 

AIC BIC AIC BIC 

Model set 1 1672.03 1689.83 1252.64 1274.00 

Model set 2 1673.50 1691.30 1252.89 1274.25 

Model set 3 1594.00 1611.80 1248.99 1270.35 

Model set 4 1594.36 1612.17 1249.11 1270.48 

Model set 5 1672.03 1689.83 1252.64 1274.00 

Model set 6 1673.50        1691.3 1252.89 1274.25 

Note: * indicates the appropriate model selected 

Table 6: Selection criteria for the six model sets 

Model sets Mixed-effects Poisson model Mixed-effects negative binomial model 

AIC BIC AIC BIC 

Model set 1 1324.41 1349.33 1244.09 1272.57 

Model set 2 1324.61 1329.54 1243.94 1272.42 

Model set 3 1321.09 1346.01 1237.80 1266.29 

Model set 4 1321.21 1346.13 1237.53 1266.01 

Model set 5 1324.41 1349.33 1244.09 1272.57 

Model set 6 1324.61 1349.54 1243.94 1272.42 

Note: * indicates the appropriate model selected 

 

As shown on Tables 5 and 6, model set 3 for the traditional model had small values 

compared to the other model sets. As shown in Table 3 for model set 3, transformation was 
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applied on traffic flow in logarithmic form while the segment length was modeled in its original 

form. The mixed effects picked up models from different model sets (Table 6). These involved 

the combined functional form in logarithm form for segment length and two forms of 

transformation on traffic flow: the log of traffic flow and traffic flow in 10
th

 millions of vehicles. 

Having these values describing transformed forms, the next section discriminates further the 

selected models based on count model distributional assumption of the dispersion parameter, 

likelihood ratio tests for nested models as well as Akaike and Bayesian Information criteria 

which accounts for model complexity in terms of the functional form which passed the test in 

section 6.0. 

 

6.1 Final model selection and interpretation 

The final models obtained from functional form assessment are summarized in Table 6 

and these include Poisson model (PO), mixed-effects Poisson model (ME PO), negative binomial 

model (NB), and mixed-effects negative binomial model (ME NB) for variables found 

significant based on the individual statistic tests and the overall tests. The models are evaluated 

based on overdispersion effects and by considering nested and non-nested structures (Cameron & 

Trivedi, 2013). Dispersion parameter was used to account for overdispersion between Poisson 

(PO) and negative binomial (NB). Likelihood ratio test criterion was used for nested models (NB 

and ME NB) while Information criteria (AIC and BIC) were used for non-nested models (ME 

PO and ME NB). Based on model fit criteria, the value of 𝛼 = 0.626 and its test resulted in a chi 

square statistic of 340.43 with p-value equals 0.000. This implies that the data at hand could be 

modeled by negative binomial model (NB). However, appropriateness of negative binomial (NB) 

can only be possible for the fixed-effects part only and observed data was clustered with random 
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parameters. This required extending the traditional negative binomial to accommodate random 

parameters and therefore it was appropriate to compare NB with ME NB. The likelihood ratio 

test resulted in a chi square of 15.55 with a p-value equal to 0.000 which implies that the 

appropriate model was a mixed-effects negative binomial. Mixed-effects Poisson model was also 

found appropriate when compared to Poisson (PO) model as shown by the likelihood-ratio test 

with chi square of 270.23 and a p-value of 0.000. Under these results it was appropriate to rule 

out negative binomial (NB) and Poisson (PO) and considered the mixed-effects models (ME PO 

and ME NB). 

Comparison of mixed-effects Poisson model (ME PO) and mixed-effects negative 

binomial model (ME NB) based on the information criteria. Two criteria were used for 

comparison: Akaike information criterion (AIC) and Bayesian Information criterion (BIC). The 

requirement under these criteria statistics is that a model with low value is considered to have a 

good-fit under the data at hand. As the results indicated on Table 7, the mixed-effects negative 

binomial had the lowest values for both AIC and BIC values. Under these results, mixed-effects 

Poisson model was eliminated and the final model according to the selection criteria was the 

mixed-effects negative binomial model (ME NB). The final model also had a significant 

heterogeneity parameter with a value equal to 0.353 which is statistically significant with p-value 

equal to 0.000. 

 

6.1.2 Model interpretation 

Table 7 below indicates the final model selected which was the mixed-effects negative 

binomial model. These results comprised of variables with fixed effects as well as random 

effects parameters. Fixed effects parameters included explanatory variables at the lower level 
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and the second level. As aforementioned in the methodology section, a freeway segment in this 

case is treated as a cluster while the small sections dividing the cluster occupy level one. 

Variables observed at level one was the counts of crashes, traffic flows, and vehicular speed. 

Only the traffic flows modeled as function of logarithm were significant. Explanatory variables 

at the segment level are also called contextual variable and vary across the freeway segments. 
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Table 7 Final models selected 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Log (Traffic volume)  1.723 12.76 
 

 0.727 2.90 
 

 1.623 6.30 
 

 1.291 4.30 

Right shoulder -0.172 -6.43 
 

-0.091 -2.11 
 

-0.180 -3.61 
 

-0.152 -2.86 

Base length -0.000       -1.85 
 

-0.546 -1.86 
 

-0.000 -1.48 
 

  

Log (Base length)          -0.690 -1.88 

Weaving segments (enex seg.) -0.365 -3.30 
 

-0.361 -2.63 
 

-0.183 -1.31 
 

-0.324 -2.11 

Intercept -10.410 -10.11    -3.472 -1.90   -9.531 -4.92    -5.477 -2.07 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.318 (0.166) 
    

0.191 (0.173) 

Variance - enex seg. (Std. err.)       0.357 (0.090)         0.179 (0.088) 

Model fit criteria 
           

lnL -792.000 
 

-653.542 
 

-618.500 
 

-610.76 

AIC 
 

1594.000 
 

1321.08 
  

1248.99 
 

1237.53 

BIC 
 

1611.801 
 

1346.01 
  

1270.36 
 

1266.01 

Alpha (α) 
      

0.636 
 

0.362 

LR test for α = 0  
      

347.01 (0.000) 
 

-4.42 (0.000) 

LR test Vs PO & NB (p-value)       276.91 (0.000)         15.58 (0.000) 

Note:  log 𝜇𝑖𝑗 =  𝛽0 + 𝛽1𝑙𝑜𝑔(𝑣𝑜𝑙𝑢𝑚𝑒)𝑖𝑗 + 𝛽2 𝑟𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑗 + 𝛽3𝑠𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑗 + 𝛽4 𝑒𝑛𝑒𝑥𝑖𝑗 +  𝑢01𝑗 + 𝑢4𝑗 𝑒𝑛𝑒𝑥𝑖𝑗    (33) 

   (
𝑢01𝑗

𝑢4𝑗
) ~ 𝑀𝑉𝑁(0 Ω𝑢) ,     𝟎 =  (

0
0

) ,  Ω𝑢 =  (
𝜎𝑢01

2 0

0 𝜎𝑢4
2) 

Var (𝑢01𝑗 +  𝑢4𝑗 𝑒𝑛𝑒𝑥𝑖𝑗 ) =  𝜎𝑢01
2 + 𝜎𝑢4

2 (𝑒𝑛𝑒𝑥𝑖𝑗 )
2                                                                                                                         (34) 

Variables:  log (volume): log of traffic volume; rshoulder: right shoulder; slength: short base length; enex: weaving segments;  

PO: Poisson model; NB: Negative Binomial model; ME PO: Mixed-effects Poisson model; ME NB: Mixed-effects Negative Binomial        
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Table 7 revealed interesting results which shows the importance of including random 

terms in modeling traffic safety. Of particular importance are the changes in the regression 

coefficients across models with and without random effects. In should be understood that random 

effects represents a group of influencing factors which are believed to generate the underlying 

mechanisms of crashes on the road network. These factors may be known but cannot be collected 

or they may be unknown. The random effect represents the overall effects and they are 

summarized by the distributional parameters in this case the random effects are summarized by 

their variances. 

It can be seen that there is a consistence revealed by the direction of changes in the 

regression coefficients. Specifically models without random effects are shown to have high 

regression coefficients compared to those models with random effects. This is an indication of 

biasness in the quantities of the regression coefficients for models which did not include random 

effects. Basing our decision on these models is likely to lead to making unrealistic judgement of 

our safety levels of the freeway segments.  

On the hand, the models with random effects are likely to generate realistic quantification 

of influencing factors because according to the model estimation theory, the group effects which 

are random effects are factored out and summarized as variances. This implies that the estimated 

effects of the explanatory variables involve on those factors retained in the model. These effects 

can be revealed by the changing of regression coefficients as one moves from using a convention 

count model to a mixed effect model which accounts for all the factors which were not included 

in the model. For all models which included random effects, their regression coefficients were 

found small compared to those from the conventional count models. 
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6.1.1 Fixed effects coefficients interpretation 

After accounting for the effects of all factors which are either unknown or cannot be 

collected easily and randomness within a single explanatory variable such as the type of a 

segments, the first part of the mixed-effects model displays results indicating quantification of 

the influencing factors of the observed model on the crash frequency occurrence. These results 

revealed fixed effects of factors on the occurrence of crash frequency and by definition a fixed 

effect refers to the assumption about the influencing factors. By fixed effects in this case means 

that the estimated regression coefficients of explanatory variables are assumed to be constant 

across the clusters, that is the freeway segments.  

As shown on Table 7, all geometric variables retained in the model had negative effects 

on the crash frequency occurrence while traffic characteristics reflected in the traffic flow 

displayed positive effect. Results indicating the effects of traffic flow on crash frequency had a 

nonlinear relationship and with the application of log on traffic flow, the effect is of constant 

elasticity effect. Specifically, the results indicate that for a one percent increase in traffic flow, 

there was an increase of 1.291% increase in the crash frequency. This means that more vehicular 

traffic increased crash counts within the clustered subsections with the same base segment length 

and segment type. This is intuitively true because with an increase in the number of vehicles 

using the facility gaps between vehicles is reduced and therefore the likelihood of drivers to be 

involved in crashes is high. It is also likely that with a congested facility resulting from an 

increased number of vehicles, drivers are likely to be influenced in their driving behavior leading 

to maneuverability which in turn is likely to result in more crashes.  

The coefficient on the right shoulder was found negative which indicates that wider 

shoulders reduced the log of crash counts between segments of the same segment length, traffic 
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flow as well as of the same type of segment. This can be explained by the fact that with the wider 

shoulders, there would be enough area for drivers to maneuver to avoid crashes. In addition, 

wider shoulder also tends to improve safety by providing a stable, clear recovery area for drivers 

who have left the travel lane. 

Segments with relatively long base length reduced the crash frequency for segments with 

the same levels of traffic flow, shoulder width and of the same type. These are expected results 

because when compared to relatively short segments (length less than 0.5 mile) it is obvious that 

there will be an increase in the crash counts due to complex driving environment which may 

contribute to the occurrence of crashes. With respect to short segments, Liu et at (2010) found 

the same results for freeways with closely spaced entrance and exit ramps. 

Weaving segments (EN-EX type) reduced the log of crash frequency compared with non-

weaving segments for the same fixed values of the other roadway and traffic characteristics 

included in the model. The results may be explained by the existence of speed-change lanes 

where drivers have time to make decisions whether to accelerate and merge with the through 

traffic or decelerate to diverge from the main facility. This fact helps them to avoid risk hazards 

which may be encountered because more time will be available while drivers are still on speed 

change lanes before taking an action of either merging or diverging. 

 

6.1.2 Random effects coefficients interpretation 

The second part of the model as shown in Table 7 is the random part of the model. The 

random part accounts for unobserved variability in crash frequency arising from the unobserved 

factors believed to influence crash occurrences on the network. Furthermore, in addition to the 

group effects which summarize all factors effects not modeled, variability can also arise when 



www.manaraa.com

 

80 
 

there are individual differences within a specific explanatory variable. The formal variability is 

summarized by the model intercept which is allowed to vary to account for effects arising from 

the combined effects of unobserved factors. The latter variability accounts for the individual 

factors differences across the freeway segments. For instance, segment lengths vary from one 

segment to another and its corresponding effects will also vary. The proportional of influence 

which leads to excessive variability is accounted for by allowing the regression coefficients on 

that variable to have a random effect and is summarized by its variance.  

With respect to this study, the focus was to investigate the existence of variations 

between – segments (measured by the slope variance) and variation in crash frequency between 

the segment regression lines. Only the segment type was found to have a significant variation in 

influencing crash frequency. The variance for the intercept was equal to 0.139 with standard 

error of 0.165. This implies that approximately 13.9% of variation can be attributed at the 

segments level (EN-EX Vs EX-EX segment types).  

These results revealed a clear difference across the freeway segments. Specific to these 

results is the differential impact of factors attributed to local environment and operational effects 

in the mechanism of crash occurrence. Factors such as aging, mental ability to process 

information while driving, differences in reaction time to stimuli encountered all can be 

attributed to the segment level. It should be understood that factors at the segment level are likely 

to be correlated if they are attributes to a road use. 

To better understand which segment predicted either above or below the average crash 

counts, it is appropriate to plot the segment ranked residuals with 95% confidence interval. It 

should be understood that these residuals represent segment departures from the overall mean of 

crash counts and therefore a segment with confident intervals which do not overlap the line 
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representing the mean crash count across the segments is said to differ significantly from the 

average at the 5% level. As shown in Figure 17, at the right-hand side of the plot there are 

clusters of segments with above average crash counts and these were found to be of both types 

(EN-EX and EX-EN segment types). The graph can help in network scanning to unlock areas 

with unobserved factors leading to crash. 

 

 

 Figure 18 Variation in crash counts of clustered sections within each segment type 

 

Since the major sources of heterogeneity in crash frequency are attributed to the 

influencing factors, it is appropriate to associate these sources as a function of explanatory 

variables. This can be achieved when the variation across the segments can be investigated as a 

function of segment type, an explanatory variable which is found significant in its variation 

across the freeway segments. Using Equation 3 on the note of table 7, it was found that EN-EX 
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segment had the highest between segment variance (5.77%) compared to EX-EN segments 

although the fixed effects results indicated that EN-EX segments reduced crash counts. On one 

hand this result indicates the existence of underlying process generating unobserved factors 

linked to crash occurrence but on the other hand the existence of more geometric feature on 

weaving segments relative to non-weaving segments is likely to contribute to possible 

heterogeneity in crash frequency. 

 

6.2 Accounting for Regression to the mean effect 

The results discussed provide an opportunity to understand and quantify the effects of a 

combined effect of factors defining a freeway segments. These factors are observed to be 

geometric, traffic, human, and environmental factors. Within a typical segment these combined 

traits define a reference population on which inference can be done about the population of areas 

with the same characteristics. To appropriately characterize the combined effect on the crash 

frequency, expected values are desired rather than an individual effect of factors such as the 

shoulder.  

Since we are dealing with a reference population, on average the expected crash 

frequency of that population is unknown but observed crash counts for a segment has shown to 

regress towards this mean leading to the regression to the mean bias in improving safety levels of 

these areas. To extend on the aforementioned discussion of interpretation of individual factor 

results, this section gives a background first on the concepts of regression to the mean and 

Empirical Bayes approach to solving regression to the mean bias. This is because the estimated 

results on Table 7 are based on what was observed after accounting for site heterogeneity and 

therefore cannot reflect the actual safety levels of a site.  
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6.2.1 Regression to the mean 

Crash frequency occurrence in most locations has exhibited a tendency to fluctuate 

around unknown expected crash frequency for groups of locations with the same characteristics. 

Such tendency observed in crashes counted across groups of sites which are characterized by the 

same factors influencing crash occurrence, introduces regression to the mean bias into crash 

estimation and analysis. In the event that if sites are selected for treatment based on observed 

high crash frequency, then further problems leading to selection bias are likely to be encountered 

(Hauer, 1997; Sharma, 2006). Based on the effect of the regression to the mean, actual counts 

observed at a location in a given period do not reflect the actual expected crash counts.  

Furthermore, estimated expected crash counts from the predicted models as one shown in 

Table 6 of this study reflects the expected counts of a given site based on what was observed and 

included in modeling process. It is based on these reasons, the true estimates of the expected 

crash frequency has to be adjusted to reflect actual counts observed as well the estimated 

expected crash frequency predicted by regression analysis techniques. Empirical Bayes 

approaches are applied to account for regression to the mean effect as explained in the following 

section. 

 

6.2.2 Empirical Bayes Approach 

Empirical Bayes methods are used to predict the expected crash frequency of a given site 

from a group of sites with similar characteristics by combining the actual observed crash counts 

and estimated expected crash counts obtained from the regression analysis (AASHTO, 2010). As 

shown in Table 6, this study estimated the expected crash counts of sites based on traffic and 
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geometric characteristics. The following is the function in natural log form of the estimated crash 

frequency based on the fixed effect part only: 

𝑙𝑛𝜇 =  −5.477 + 1.291 ∗ log(𝑓𝑙𝑜𝑤) − 0.152 ∗ 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 − 0.69 ∗ log(𝑙𝑒𝑛𝑔𝑡ℎ) − 0.324

∗ 𝑒𝑛𝑒𝑥                                                                                                                                (35) 

Based on equation (35), expected crash frequency for each included in the model can be 

obtained. It should be understood that each set of combined characteristics determines an 

estimated expected crash frequency for a population of sites with similar characteristics from 

which each individual site’s observed crash frequency has a tendency to regress to the actual 

expected crash counts in that group. To account for this effect, Empirical Bayes techniques 

require that, the estimated crash frequency of a site in a group of sites with similar characteristics 

is weighted by a linear combination of the observed and estimated crash counts by the following 

relationship: 

𝐸(𝜇|𝜇𝑠) =  𝛼𝐸(𝜇) + (1 − 𝛼)𝜇𝑠                                                                                                              (36) 

𝛼 =  
1

1 +
𝑣𝑎𝑟(𝜇)

𝐸(𝜇)

                                                                                                                                                        (37) 

From equations (36) and (37), 𝐸(𝜇) is the expected crash counts obtained from equation (1) for 

every site, 𝛼 is the weight used to determine proportions of crash counts and estimated crash 

counts in order to determine the actual counts expected. 

 

6.2.3 Predicting site safety 

The combined values of the estimated expected site crash frequency from the observed 

information and the actual crash counts observed in an analysis period characterizes safety levels 

of a site. This has been shown by the application of empirical Bayes approach. The importance 
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of this method is that it draws information from what is being observed and partly from what is 

left out of the model reflected in the actual number of crashes observed at a site. This technique 

was applied on this study to estimate the expected crash frequency of a site because as indicated 

by the results on Table 7, site characterization cannot be determined based on what was observed 

only but also on the actual counts. 

 

 

Figure 19: Comparison of observed Vs predicted crash frequencies 

 

Figure 18 above shows the actual crash counts observed at a given site and expected 

crash frequency predicted by empirical Bayes approach which combines estimated information 

from the regression analysis and actual observed crash frequency. Based on these results it is 

clear that both observed crash counts and estimated expected crash frequency cannot be a good 

estimator of the actual expected levels of a site. As the figure shows, the actual number of counts 

observed at the site what found to be significant compared to the actual expected safety levels of 

a site given the observed crash counts. 
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 Figure 20: Predicted Vs Observed crash frequencies 

 

The type of a segment also indicated variations between the predicted and observed crash 

counts. Figure 19 shows predicted crash counts paired with its corresponding observed crash 

counts for the same type of a segment. Starting from the left side of the box plot, the first box 

plots indicates freeway segments with entrance on both terminals of the segments, that is EN-

EN. Approximately the estimated expected crash counts were found to be higher compared to the 

observed crash counts. The same trend was also observed in case of the weaving segments 

denoted as EN-EX which had the highest estimated crash counts compared to what was actually 

observed as well EX-EN. However, EX-EX segments had a different trend with approximately 

equal number of crash counts for both observed and predicted. 

Discussion about the fixed effects results revealed more variation in the weaving 

segments compared to non-weaving segments. It was also shown that weaving segments reduced 
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crash frequency compared to the non-weaving segments. By comparison with the results as 

indicated from Figure 19, the same trend can be depicted on average. However, other segments 

were compared in general while the box plot gives the details for every segment. 

 

6.3 Summary 

The purpose of chapter 6 was to predict safety of a site which in this case is the freeway 

segment. To accomplish this important step, it was important to account for a number of factors 

including assessing the appropriate structural functional forms of the safety predicting model, 

selecting parsimonious model, accounting for variability at the site and at the individual level of 

factors influencing site safety, and accounting for the regression to the mean bias. 

The aforementioned issues are important towards characterizing site safety but also 

towards an important step of decision making to improve site safety through the appropriate 

selection of treatment methods and strategies. Structural form of the model was important 

because of violation of the distributional structural form across the factors and crash counts 

occurrence mechanisms. Specifically, structural form assessment involved covariate 

transformation to a function appropriate to realize its importance in influencing the mechanism 

of crash occurrence. This involved moving from original form of traffic flow and segment length 

to using natural logarithms. 

Selecting the appropriate count model in association to the data structure involves 

assessment of the relative importance of random effects and issues of overdispersion arising 

through the use counts models. Overdispersion limits the applicability of traditional poison 

model in the event that an ancillary parameter is significantly leading to a two parameter model 

which is the negative binomial. Further selection is important when factors influencing crash 
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occurrence cannot be included in the statistical model because they are unknown or cannot be 

collected. This helped to separate the appropriate models into two parts involving fixed effects 

and random effects where the latter accounts for unobserved heterogeneity. 

Accounting for unobserved variability arising from unobserved factors is an important 

step towards gaining actual and realistic results of estimating the expected crash frequency of a 

site. However, due to the effects of regression to the mean, it is important to characterize site 

safety by accounting for both the predicted site safety as well as the actual counts observed at a 

given site. This brought in the use empirical Bayes approach which combines what was an 

estimate as an expected crash frequency and what was actually observed at the same site. The 

ultimate goal was to characterize the site in terms of the actual expected crash frequency given 

the observed counts at the site.  

The use of predicted site safety levels is in aiding an engineer and decision maker to rank 

site according to their safety levels and prioritize which site to be treated. Furthermore, future 

evaluation can also use these results as before situation and evaluate the impact of treatment 

provided at the site in the after period by comparing site levels before and after the treatment has 

been applied at the site. 

Issues of unobserved heterogeneity may also lead to another problem which is likely to 

violate classical statistical model when crash frequency observed from freeway segments sharing 

an arbitrary border exhibit correlation in space. Spatial autocorrelation has been observed to 

influence estimated results thereby introducing biasness into the regression coefficients and 

decision making based on these results are likely to lead to erroneous decisions. Chapter seven 

discusses the concepts and effects of spatial autocorrelation, also known as second order degree 

effects, in terms of quantitative results estimated. 
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CHAPTER 7 BAYESIAN SPATIAL MODEL RESULTS 

7.1 Spatial autocorrelation 

Spatial autocorrelation as aforementioned may be generated by spatial processes in which 

operation condition may likely cause freeway segments to influence each other in crash 

frequency occurrence by contagion. It may also arise due to misspecification of the model, an 

event which leaves spatially autocorrelated patterned information in the model residuals. Under 

these circumstances, it is important to test the existence of spatially autocorrelated crash 

frequency before making decisions to incorporated random effects in the modeling processes. 

Spatial autocorrelation can be of two natures: Positive spatial autocorrelation is when 

similar values cluster together in a map. Similarity in this case means that high values of crash 

frequency cluster near high values of other crash frequencies or low values do cluster near other 

low values of the crash frequency. On the other hand, negative spatial autocorrelation is when 

dissimilar values cluster together in a map and by being dissimilar is an indication that clustering 

of crash frequency near to each other in space occur between high and low values of crash 

frequencies. 

 

7.1.1 Global Moran’s I Index 

Based on the concepts mentioned above concerning spatial autocorrelation, this study 

tested the existence of spatial autocorrelation for contagious freeway segments using a Global 

Moran’s I Index. An index is based on the hypothesis that crash frequencies observed on the 

freeway segments are randomly distributed and when its p-value is highly significant, the 
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hypothesis can be reject. At this point either the crash counts exhibit positive or negative 

autocorrelation. 

The test was run on ArcMap for the digitized freeway segments with crash frequency 

attributes and the results indicated Global Moran’s I Index equal to 0.162 with z-score = 2.06 and 

p-value = 0.04. It should be understood that a significant p-value with a positive z-statistic is an 

indication of the existence of spatial autocorrelation which implies that high crash frequency 

values tend to cluster near other high values of crash frequency. 

The existence of the dependence in crash frequency across contagious freeway segments 

has an implication in the statistical modeling of crash frequencies. Specifically, this focuses on 

the assumptions of independence guiding distributional assumptions of statistical models. Under 

these models it is assumed that crash frequency observed on the freeway segments are randomly 

distributed across those segments. However, under these results it is evidence that when 

modeling freeway segments abutting each other, it is likely that spatial autocorrelation to occur. 

When terms recognizing such existence are not incorporated in the modeling process, the results 

may be biased because standard errors are likely to be inflated leading to wrong inferential 

statistics. Section 7.3 focuses on building a regression model in a Bayesian framework which 

incorporates terms modeling spatial autocorrelation based on Conditional Autoregressive (CAR) 

Models. 

 

7.1.2 Local Moran’s I index 

The above test conducted above shows a Global statistics which indicates in general the 

existence of spatially correlated crash frequencies for contagious freeway segments. To identify 

locations within a network where clusters are located, a local statistic can be of help. Getis-Ord 
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General G, is a local statistic index which measures the degree of clustering for either high 

values or low values of crash frequencies. Based on the criteria, a positive value of the index 

indicates that segments with high crash frequencies are close to segments with high crash 

frequency and vice versa. This implies that the segment under study is a cluster. A negative value 

of the Index indicates the existence of dissimilar values and they are identified as outliers.  

Figure 20 below displays those segment found significant with clustering behaviors. 

 

 

 

Figure 21: Identified freeway segments with crash frequency clusters 

 

The notation indicated as “HH” in Figure 20 shows those segments identified to have 

high values (H) of crash frequency and surrounded by segments with high values (H) of crash 

frequency. Traffic flow is moving towards right from the left side and it can be evident that both 

types have identified as having clusters. However, by the concept and assumption used in this 

study, freeway weaving segments are likely to generate more vehicles to the proximate segments 

because of geometry. This means that at the on-ramp of a freeway, more vehicles are expected to 

enter the freeway and combining with through vehicles entering that segments, it is expected that 

more vehicle will occupy the segment closest to the weaving segments which in turn increases 

the likelihood of a crash to occur. 

On the other hand, spill over caused by shock wave can also be a source of secondary 

crashes when congestion exists in the vicinity of the non-weaving segments. Based on these 

possible occurrences of both primary and secondary crashes, each segment is likely to affect 

HH HH HH 
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each other segments with high impact expected to be seen for freeway segments in close 

proximity. 

 

7.2 Modeling crash counts with spatial effects 

Identification of the existence of spatial autocorrelation is an evidence of violation of the 

independent assumption under classical modeling. This means a spatial model has to be used in 

fitting crash counts with its associated influencing factors. Conditional autoregressive models are 

normally used and incorporate spatial effects autocorrelation parameters and spatial weight 

which characterizes spatial dependent for contagious freeway segments to predict expected 

levels of crash counts for a given site. The following subsection describes modeling procedures, 

assessment of the modeling results and their interpretation. 

 

7.2.1 Model comparison and assessment 

CARBayes package version 4.0 and WINBUGS version 1.4.3 were used in estimating the 

two models as shown on Table 1 below. To reduce autocorrelation of samples from the posterior 

distribution, the sequence was thinned by keeping every 10
th

 simulation draw from each 

sequence. Furthermore the first 20,000 samples were discarded and concentrate on the last 

80,000 samples to be able to diminish the influences of early iterations and achieve the target 

distribution. This implies that the final results are summarized from 8,000 drawn samples. To 

ensure that the chain’s stationary distribution approximates the target distribution, the chain was 

monitored based on trace plots, historical plots of chain process as well as density plots of 

posterior means of the covariates and autocorrelation term. The final results include the trace 

plots for only the autocorrelation term as shown on Figure 21 below. 
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Based on the model fit criteria, the Spatial GLM Poisson model had a deviance 

Information criterion (DIC) equal to 262.12 which is small compared to a Non-spatial GLM 

model. This implies that the spatial model exhibited better fit to the data and therefore 

interpretation of the results is based on the spatial GLM Poisson model. 

The final results of a Spatial GLM Poisson model contain posterior means of covariates 

and autocorrelation term. The significance of these terms is based on 95% credible intervals. 

When the 95% credible intervals includes zero, the corresponding factor is not significant at the 

95% level and vice versa.  

 

7.2.2 Model results and general overview 

Table 8 below shows the estimated models which include a non-spatial GLM model in 

which spatial random effects are not included and a spatial GLM Poisson model where spatial 

effects are explicitly modeled by using a Conditional Autoregressive (CAR) model. 

 

Table 8: Estimated Posterior means of covariates 

Covariates Estimates (95% credible interval) 
 

 Dep. Var. = crash frequency  Non-spatial GLM Poisson Spatial GLM Poisson model 

Intercept 7.45 (6.78,8.06)  4.06 (0.40,7.12) 

No. of lanes -0.57 (-0.68,-0.45) - 0.21 (-0.98,0.64) 

Segment Length in mile -8.03 (-8.10,-7.15) - 4.33 (-9.13,-0.60) 

No. of  lanes * Seg. Length 1.99 (1.80,2.19) 1.10 (0.12,2.52) 

Log (right shoulder) -1.08 (-1.25,-0.92) 
 

Weaving segment -0.03 (-0.14,0.07) 
 

𝜏2 
 

1.07 (0.63,1.94) 

𝜌 
 

0.49 (0.08, 0.85) 

DIC 1567.6  262.12 
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Comparing the two models it is clear that one can unlock some important features of the 

models. The first is the absolute magnitude of the regression coefficients. It can be observed that 

regression coefficients of a non-spatial model are large in absolute values compared to a spatial 

GLM model. This clearly indicates the existence of spatially autocorrelated features causing 

inflation of the regression coefficients. It should be understood that spatial correlation also 

represents spatial heterogeneity arising from the existence of unobserved factors which vary 

spatially for contiguous freeway segments. When these effects are not explicitly factored out of 

the model, it is likely for the model to suffer misspecification which leaves out patterned 

information in the model residuals. 

 

7.2.3 Model assessment 

Based on the results on Table 8, approximately 49% of crash frequencies across 

contiguous freeway segments are autocorrelated with a variance equals to 1.07. This result 

supports the aforementioned hypothesized situation that, there are spatial correlations of 

underlying processes generating crashes and these are likely to propagate across the adjacent 

segments. Most of the research activities analyze crash events on freeways based on the 

assumption that crash frequency observed on freeway segments are independent. This results 

lead to biased estimates if spatial effects are not included in the modeling processes. 

 

 
Figure 22: Posterior distribution of spatial correlation parameter 
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7.2.4 Model parameters estimated 

The following discussion is based on the incident rate ratios which are the exponentiated 

posterior means. In addition to the aforementioned findings, we also investigated the impact of 

geometric elements on the crash frequency after controlling for the existence of spatial effects. 

As the results showed, only the number of lanes was not significant compared to the segment 

lengths. However, since the interaction term was statistically significant and it was created from 

the main effects – number of lanes and segment length -, number of lanes is retained in the 

model to better interpret the impacts of interactions across the segment length as the number of 

facility lanes changes in addition to the main effects.  

 

7.2.4.1 Marginal effects 

The impact of the number of lanes and segment lengths are better interpreted based on 

their marginal impacts as shown on figure 20 below including its corresponding marginal effect 

function. Including an interaction term is based on the fact that the influence of the longitudinal 

space depends on the transverse space available to accommodate the number of vehicles 

available. The results displayed on Table 7 (spatial GLM model) can be reproduced in terms of 

the regression equation as follows: 

𝑙𝑛𝜇̂ =  4.06 − 0.21 ∗ 𝑙𝑎𝑛𝑒𝑠 − 4.33 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ + 1.1(𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑙𝑎𝑛𝑒𝑠)                                         (38) 

Based on calculus techniques, the marginal effects of an increase in segment length can be 

computed using partial derivatives. Since the variables involved are regarded as continuous 

variables, the marginal effects in this case measure the instantaneous rate of change of one 

variable as the other factor is increased by a small amount. Applying calculus principle, 

instantaneous rate of change of the crash frequency with respect to the segment length is equal to 
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the slope of the regression function displayed in equation 38 which in turn equal to the partial 

derivative of the function at the given length. Based on these principles, the following equation 

can be obtained: 

𝜕(𝜇̂)

𝜕(𝑙𝑒𝑛𝑔𝑡ℎ)
= (1.1 ∗ 𝑙𝑎𝑛𝑒𝑠 − 4.33)exp {4.06 − 0.21 ∗ 𝑙𝑎𝑛𝑒𝑠 − 4.33 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ

+ 1.1(𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑙𝑎𝑛𝑒𝑠)}                                                                                                (39) 

Equation 39 can be used to predict on instantaneous basis the estimated expected crash frequency 

at an instantaneous location along the freeway segments as vehicles moves for a given segments 

with fixed number of lanes. This is an important equation since it may be possible to unlock 

potential locations where crash counts are likely to cluster (that is high values) as one travels 

longitudinally for a fixed number of travel lanes. 

As shown on Figure 20, the expected crash frequency increases with longitudinal space 

for all segments with number of travel lanes observed. It should be understood that we interpret 

number of lanes as representing width of freeway in a transversal dimension. Possible 

explanation for this trend is that an increase in segment length provides an opportunity for 

drivers to maneuver because spaces for such behavior are available. Maneuverability may 

include lane changes and speeding behavior which are likely to results in crashes. 

Although, all the segments showed approximately the same trend in influencing crash 

occurrence, a closer look at the displayed plots indicates differences in the intensity of impacts 

across segments with different number of lanes. For the same segment length, the marginal 

impacts of segments with two and three lanes is high compared to those segments with number 

of lanes greater than three. 
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          Figure 23: Marginal effects of number of lanes on crash frequency 
        

       Note: 

𝜕(𝜇̂)

𝜕(𝑙𝑒𝑛𝑔𝑡ℎ)
= (1.1 ∗ 𝑙𝑎𝑛𝑒𝑠 − 4.33)exp {4.06 − 0.21 ∗ 𝑙𝑎𝑛𝑒𝑠 − 4.33 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ} 
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  The above discussion on the plots can be clearly seen on the inset table displayed below 

Figure 22. A fixed length of 1.5 mile was used to compute the marginal impact across segments 

of different number of lanes. From the results on the table, segments with more lanes had little 

impact on reducing the expected frequency. A sensitivity analysis was conducted on different 

segment lengths and the results were approximately of the same magnitude as the ones displayed 

in the inset table on Figure 22. 

 

7.3 Summary 

The results discussed above on spatial models are mostly centered at solving issues 

related to spatial autocorrelation in crash frequency data. When values of crash counts are 

correlated in space for abutting freeway segments, an independent assumption from which 

classical count models depend is violated and the results obtained are likely to be biased and 

inconsistent. The existence of spatial autocorrelation can be investigated using an index known 

as Moran’s I Index, a spatial statistical index, which identifies the existence of dependence in 

values of crash frequency for contagious freeway segments. 

The identification of the existence of spatial autocorrelation necessitates inclusion of 

spatial effects to capture all combined effects which are believed to influence crashes in the same 

trend but cannot be observed. The included spatial effect terms are modeled by spatial models 

known as Conditional Autoregressive (CAR) models which include spatial weights defining 

spatial relationship of contagious segments and spatial autocorrelation terms for capturing the 

combined effects of unobserved factors identified by a spatial index aforementioned. 

Under this section it is also possible to further identify clusters of crash frequency based 

on Anselin Moran’s Index. This is an index used to identify the strength of spatial association 
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and in this case it is a locally based index compared to the Global Moran’s index discussed 

earlier. Clusters as shown on Figure 18 imply that high values of crash frequency in an identified 

site are surrounded by the freeway segments with high values of crash frequency. In terms of 

spatial statistics terms this is known as positive spatial autocorrelation implying that there are 

spatial mechanisms generating crash counts trending in the same direction. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATION 

8.0 Multilevel modeling 

8.0.1 General model purpose and summarized findings 

The purpose of the study in chapter 6 was to analyze the impact of geometric and traffic 

flow characteristics on freeway crashes while accounting for the effect of unobserved factors, 

also known as unobserved heterogeneity, which are likely to influence crash occurrence. The 

investigation was also motivated by the fact that the distribution of crashes in space is not limited 

to only the influence areas of the divergence and convergence segments as well as weaving 

segments. Areas beyond the influence areas were observed to have crashes occurred and by 

including these areas it was possible to cluster data within the weaving and non-weaving 

segments to quantify the variability of unobserved factors through the variance of random 

parameters reflected in the group-effect heterogeneity and individual-effect heterogeneity using 

multilevel count models. 

The group-effect heterogeneity considers variability at the cluster level and in this 

research a cluster represents a freeway segment. All factors believed to have generated crashes 

but are either not known or cannot be easily available to be modeled are reflected in the 

modeling process by allowing the model intercept to vary across the freeway segments. By doing 

this, it is possible to capture the effect of unobserved factors which in this case are referred to as 

group-effect heterogeneity. To realize the impact of factors observed and included in the model, 

these group-effects are integrated out and summarized by producing a variance which is an 

indication of their existence and are quantified by the variance parameter. 
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Individual–effect heterogeneity considers the impact of individual variables variability. In 

this case the main idea is that a single factor such as the number of lanes on the freeway cannot 

have the same impact across freeway segments. To clarify these concerns consider two segments 

with one having four lanes and another one having 2 lanes. It is evident that a segment with four 

lanes is likely to have a different impact on crash occurrence experience when compared to a 

freeway segment with two lanes. The purpose of accounting for individual-effect is to realize 

such difference within a factor by allowing the slope which is a regression coefficient on that 

factor to vary across the freeway segments. The differences obtained are summarized and a 

variance is an output which represents individual effect-heterogeneity. 

The aforementioned concepts are possible if we consider a freeway segment as a cluster 

and that cluster is being divided into small sections, the purpose being to capture such variability 

at a micro-level. Information are then collected at the small section level which in this study 

included traffic characteristics from installed detectors on freeway network. At the cluster level, 

geometric characteristics are collected and these included the number of lanes, median and right 

shoulder, segment length and the type of a segment. Model results contains two parts: the fixed 

effect part which shows the impact of geometric and traffic characteristics and the random part 

which gives summaries, in terms of variances, of all factors which were not included in the 

model but may have an impact on crashes and variability reflected in the differences within a 

single factor. 

The results of the fixed-effects part indicated that more vehicles increased crash 

frequency while wider right shoulder, segment length decreased crash frequency during the 

analysis period. It was also revealed that weaving segments decreased crash frequency compared 

to non-weaving segments. 
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The results of the random-effect part indicated that 13.9% of the variation in crash 

frequency is unaccounted for which is an indication of the existence of unobserved factors 

influencing the occurrence of crashes. This variance represents group-effect heterogeneity 

explained earlier where all factors attributed to a given segment, here referred to as a cluster, are 

integrated out and summarized by outputting a variance. Although what specifically contributes 

to having a variance of 13.9% is not known, this results represents important alert to safety 

analyst professionals that there are more information leading to crashes but are either not known 

or cannot be easily obtained at the moment. Further research with different designs and modeling 

approach are required on continual basis to learn more and understand more factors leading to 

the occurrence of crashes. 

It was further revealed that weaving segments (EN-EX) had the highest between segment 

variance compared to non-weaving segments. According to the earlier explanation this represents 

individual-effect heterogeneity and the model results indicated that 19.6% of the variation is 

between the weaving segments. Although other factors did not have a significant variance, this 

result narrows down location on freeway network where variability in crash occurrence is 

expected compared to other locations namely non-weaving segments. 

 

8.0.2 Recommendation for application 

An important step is the guidance on how findings obtained from this study can be used 

to improve road safety. One application is that, the model framework gives an engineer, the 

cluster of the actual segments with above average crash frequency (figure 14). This is possible 

because the model setting includes random effects part and it is under this part all factors 

generating crashes but are unobserved are available for every freeway segment. These group-



www.manaraa.com

 

103 
 

effects are ranked and drawn on a caterpillar plot and a segment with the above or below average 

crash frequency can be identified. Spotting out these segments is a way of screening the network 

to find locations with need for further research and improvement based on the existence of 

unobserved factors. It is also intuitive that as we narrow down our investigation and 

improvement more problematic locations, we are exercising efficient allocation of resources in 

the sense that improvement resource can be allocated to areas where there is a need. 

The second application of the model concerns before-after studies in road safety of actual 

roadway sections where the geometric elements were changed. This study considered the 

analysis period to be 2013 and therefore the findings provide an estimated model of what safety 

levels was if changes in geometric elements were made prior to the analysis period. This 

comprises an after study results. Data prior to the analysis period can be used to obtain a 

prediction model and through extrapolation, the model predicts what would have been the safety 

levels in the absence of changes in the geometric elements (Hauer, 1997). The difference of 

safety levels before and after studies indicates improvement. This was the essence of 

incorporating empirical Bayes approach which in return helps getting more realistic results to 

characterize safety levels of freeway segments. 

The sign and direction of improvement is a function of specific changes made. For 

instance, an additional lane on the main facility between on-and off-ramps is likely to indicate 

better positive safety levels due to an added freeway capacity expected. Negative safety levels 

may result from narrowing a geometric element such as a shoulder for the purpose of adding 

high occupancy vehicle lanes. It is therefore important to conduct before-after studies to quantify 

actual levels of safety once changes are made in a network. 
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8.0.3 Conclusion 

Incorporating items which accounts for unobserved factors in count models has recently 

been of great interest to transportation practitioners (Mannering & Bhat, 2014). By allowing 

parameters to vary across segments it is possible to capture and quantify unobserved factors. 

Ignoring these factors results in biased coefficients in a multilevel settings because the estimate 

of the standard errors will be wrong (Bristol, 2014). Unobserved factors are the results of a 

number of underlying processes both in space and time. Spatial phenomena behavior across 

freeway segments can results in spatial effects (both first and second order effects) leading to 

variation in the mean crash frequency of the process in space of spatial autocorrelation in the 

process. Spatial autocorrelation is the tendency for deviations in values of the process from its 

mean to follow each other in neighboring sites (Anders & Sophia, 2012). A natural extension of 

this study is to include spatial effects in modeling crash frequency in addition to geometric 

features. 

Previous research has shown to improve on applying methodologies which helps to 

understand factors contributing to crash occurrence while leaving out those factors unavailable or 

cannot be corrected at the moment. However, the main purpose of all of these approaches is 

trying to explain variability in the crash frequency through the variability of influencing factors. 

It is under this approach that current research hasn’t documented at a micro-level all sources of 

variability in crash frequency. Literature reviews indicate the existence of limitations in account 

for the possible sources at all levels of the model. This implies that data structure which is 

currently being employed in multilevel modeling do not entirely capture these sources leading to 

unobserved heterogeneity all levels. 
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These important methodological barriers which remain in the statistical analysis of crash 

data was the essence of my research. To address issues of unobserved heterogeneity, one needs 

to capture more variation at a small level within the road network in order to account for the 

most possible source of variation. However, research already conducted had limitations in data 

structure set up.  

For instance, (Venkataraman, et al, 2011) used segments at the interchange and 

noninterchange levels but accounted only variation within the explanatory variables by 

estimating random parameters which correpond to individual-effets heterogeneity in this 

research. Furthermore, Interchange segment were defined by the farthest merge and diverge 

ramp limits for each direction which implies that a segment contained more than one 

interchange. Noninterchange segments were defined as a cintinuous travel segment between two 

interchanges. By including only parameters to capture differences across individual factors 

leaves out variability leading to group-effect heterogeneity and it is at this point my research 

differes with the current practice. Specifically, my research is at the a micro-level where a 

freeway segment is further subdivided into small segments to aid in capturing more variations 

across the segments and within the sub-sections. 

Furthermore, (Anastasopoulos et al, 2009) used segments with homogeneous 

characteristics but accounted for random parameters only. However, even if a segment is 

homogeneous, there are still differences in terms of unobserved factors across these segments 

which need to be accounted for but were not captured. This could be possible by allowing an 

intercept to vary across the segments. Other research activity, such as (Dinu et al, 2011) divided 

the freeway into homogeneous sections based on traffic volume, carriage way width, and 

shoulder width but only random parameters were estimated which in turn leaves variability at the 
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segement level un accounted for. Compared to the se research activities, my research has 

addressed possible variability in crash frequency at a micro-level by considering a freeway 

segment divided into small sections. Furthermore, variability at all levels are captured by 

introducing group-effects heterogeneity and individual-effects heterogeneity. 

 

8.1 Bayesian spatial modeling 

8.1.1 General model purpose and summarized findings 

The purpose of study reflected in the results represented in chapter 7 was to account for 

the effects of spatial autocorrelation, also known as second order spatial effects. Spatial 

autocorrelation traditionally compares values of a variable assigned to areas and determines if 

the distribution of the variable is random, clustered, or uniform. It is one of the components 

leading to unobserved heterogeneity being referred to as spatial heterogeneity. If these effects are 

not included in quantifying the impacts of influencing factors, the results obtained are likely to 

be biased.  

This study investigated the existence of second order spatial effects for contiguous 

freeway segments. This was motivated by the fact that there are spatial correlations of underlying 

processes generating crashes and these are likely to propagate across the adjacent segments. 

Furthermore, there are interdependences across freeway characteristics in influencing crash 

occurrence which means the effect of one of the geometric elements depend on other geometric 

element. Including interaction terms in modeling reduces the impact of unobserved heterogeneity 

because it accounts for effect modification resulting from modification variables. 

The existence of spatial autocorrelation was tested by computing a Global Moran’s Index 

which determines the possible existence of spatial pattern in values of the crash frequency 
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assigned to contagious freeway segments. Positive autocorrelation was found which implies that 

there exists crash frequency clusters for abutting freeway segments trending in approximately the 

same direction. By the same directions it means, high values of crash frequency are likely to be 

found near other high values of crash frequency for freeway segments which share border.  

Furthermore, a local index was also found to understand and located locations on a 

network where such behavior is highly significant. The results showed at a local level, the 

existence of these clusters and an interesting part at this point was to know which type of 

segments which high values borders the other. Under these result, all segment type was identified 

to abut each other which means no particular segment is safer than the other. 

Based on the main effects of the spatial GLM model which is reflected on the regression 

coefficients on the number of lanes and segment length, it was found that more lanes on a given 

segment and long segments reduced the level of crash frequency during the analysis period. 

Longitudinal space which is reflected in the segment length exhibited differential impact across 

long freeway segments. This differential impact can be explained by the existence of differential 

transverse space reflected in the number of travel lanes for long segments. This implies that 

interacting influencing factors helps to reduce the impact of unobserved modifiers leading to 

biasing results. It is imperative that safety modeling include terms which explain any general 

forms of unobserved heterogeneity. This helps to come up with actual impacts of the influencing 

factors retained in the model. 

 

8.1.2 Recommendation for application 

The developed model can be applied as a discriminant model. This is based on the fact 

that spatial effects terms are included in the modeling process. Theories on the estimation 
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process require integrating out these effects and summarize them in terms of variance, a method 

which leaves out the actual influences of the remaining factors. Based on figure 19 a researcher 

can point out locations on the freeway network from which its factors exhibited more impacts on 

the crash frequency. For instance, with these results segments with four and five lanes increased 

crash frequency compared to those with fewer number of lanes. These lanes require further 

investigation to be able to understand causes of crash frequency occurrence. 

Another important application is based on the natural interpretation of most of the 

regression coefficients. Negative coefficients in most of the cases means the corresponding 

factors had a negative impact and therefore by increasing those factors help to reduce more crash 

frequency on freeways. For instance, the results for long segments with few numbers of lanes 

indicated that by increasing the longitudinal space we are able to reduce the number of crash 

frequency experienced. This is counter-intuiting with segments of the same length but have more 

lanes. This means we cannot adopt an alternative of increasing segment length on these 

locations. This helps to narrow down countermeasures alternative and focus on Intelligent 

Transportation Systems designed for safety purposes.  

Furthermore, as detailed out on chapter 6 concerning issues arising from regression to the 

mean, it is possible under these results to account for the effect of regression to the mean by 

applying empirical Bayes approach to the results of spatial GLM Poisson model obtained in 

order to characterize the actual safety of a freeway given the actual crash counts observed at a 

site. Based on these results, decision making can be made on which locations can be prioritized 

for proper treatment. 

 



www.manaraa.com

 

109 
 

8.1.3 Conclusion 

The main focus of chapter 6 was to analyze safety by accounting for the effects of spatial 

autocorrelation for freeway segments which share arbitrary border. This was motivated by the 

fact that there are underlying processes from one area which are likely to affect another area 

there by generating crashes. An example to clarify this fact is when vehicles from one area spill 

over to another area in close proximity. This may happen when a road network is highly 

congested which in turn can generate secondary crashes. 

Furthermore, there exists unobserved factors which are likely to propagate in space or 

time to abutting freeway segments leading to approximately equal pattern of crashes to the next 

area. An example is the pavement condition in close proximity of the abutting segments. If such 

defects occupy in both areas and it has known to cause crashes, this means the two areas will 

have the same factor generating crashes although the rate of cause may be different. The existing 

of spatial autocorrelation limits the applicability of statistical models which are based on the 

assumption of independent across crash counts. Solution to this challenging problem is to 

incorporate random effects terms which in turn help to capture spatial heterogeneity reflected in 

the spatial autocorrelation terms. Conditional Autoregressive (CAR) models have been design to 

be used when spatial autocorrelation is detected in crash frequency. 

 

8.2 Model transferability 

Model transferability refers to the adaptability of a developed model(s) from one region 

to be applied to another region (jurisdiction). This implies that safety performance functions can 

be imported between jurisdictions or between time period if the analysis differs and it can be 

done through model calibration process. For the results obtained in this study to be adapted to 
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other regions with different features compared to the local roadway and traffic features used, a 

calibration process known as Bayesian model averaging (Chen, Persaud, & Sacchi, 2012) is 

proposed because it addresses model uncertainity in which no reasonable safety performance 

function would be discarded. Although this approach was applied on signalized intersections, the 

main focus is on calibration methodology principles used rather than the specific area used. 

 

8.3 Future research need 

This research has identified a number of issues surrounding the analysis of safety in road 

networks. The main focus of the whole research was to conduct safety study while accounting 

for factors which bias the end results. The main two issues discussed in this study was the 

unobserved heterogeneity reflected in the absence or unknown factors which are ultimately not 

included in modeling process and spatial heterogeneity issues which are reflected when values of 

crash frequency from areas sharing an arbitrary border exhibits spatial autocorrelation. 

The results of the former have indicated the existence of unobserved heterogeneity on 

freeway segments. This implies that many factors are involved in the crash generating 

mechanisms but are unknown or cannot be collected although they might be known. An example 

is information processing capability which requires a road user to quickly be able to screen 

information while moving on the network to be able to avoid collisions. This factor is not easy to 

measure at the time a crash has occurred but also even if it was the main cause, chances are that 

it may not properly be recorded as the main cause of a crash. Under this situation, more research 

is required to account for these factors in order to clearly understand crash generating 

mechanisms and device proper method of improving our networks. 
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 Furthermore, the results from the spatial GLM Poisson study have indicated the 

existence of spatial autocorrelation across contiguous freeway segments. This implies that 

segments with spatial proximity constitute traffic and geometric characteristics which influence 

crash occurrence in a similar trend. This phenomenon violates the distribution assumption of 

Poisson process under which crash events occur. My future research will involve simultaneity 

treatment of freeway segments in analyzing safety effects of factors which are believed to 

influence crash occurrence. Simultaneity behavior of observation unit can be incorporated in 

safety analysis by using simultaneous equation models which are the special case of the general 

structural equation models. In addition to solving the aforementioned problem of distributional 

assumption, general unobserved heterogeneity terms can further be incorporated to account for 

random effects.  

An alternative approach to extend the aforementioned techniques which are based on 

maximum likelihood estimation approach is modeling crash frequency based on a model which 

does not assume any probability distribution. Generalized method of moments (GMM) (Hansen, 

1982) derives estimators which use assumptions about the moments of the random variables to 

derive an objective function. The assumed moments of the random variables provide population 

moment conditions from which parameters estimates can be obtained by finding the parameters 

that make the sample moment conditions as true as possible. When compared to maximum 

likelihood estimation approach, generalized method of moments (GMM) is characterized by the 

fact that many estimators can be viewed as special cases of GMM. Furthermore, GMM 

techniques are appropriate where a likelihood analysis is difficult. 
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APPENDIX 

Table 9 Model set #1: Untransformed Traffic volume and segment base length 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume  0.000 10.43 
 

 0.000 2.18 
 

 0.000 5.57 
 

 0.000 2.95 

Right shoulder -0.193 -7.13 
 

-0.085 -1.93 
 

-0.176 -3.50 
 

-0.146 -2.70 

Seg. base length -0.000       -2.62 
 

-0.000 -1.88 
 

-0.000 -1.58 
 

-0.000 -1.97 

Weaving segments (enex seg.) -0.190 -2.65 
 

-0.341 -2.47 
 

-0.179 -1.29 
 

-0.289 -1.83 

Intercept -1.998 -14.76    1.604 6.37   1.592 5.35    1.754 5.76 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.309 (0.172) 
    

0.206 (0.105) 

Variance - enex seg. (Std. err.)       0.412 (0.099)         0.193 (0.187) 

Model fit criteria 
           

lnL -831.014 
 

-655.203 
 

-620.319 
 

-614.043 

AIC 
 

1672.028 
 

1324.407 
  

1252.64 
 

1244.09 

BIC 
 

1689.831 
 

1349.331 
  

1274.00 
 

1272.57 

Alpha (α) 
      

0.667 
 

0.370 

LR test for α = 0  
      

421.39 (0.000) 
 

-4.06 (0.000) 

LR test Vs PO & NB (p-value)       351.62 (0.000)         15.55 (0.0002) 
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Table 10 Model set #2: Untransformed Traffic volume and log (segment base length) 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume  0.000 10.64 
 

 0.000 2.18 
 

 0.000 5.63 
 

 0.000 2.93 

Right shoulder -0.194 -7.15 
 

-0.088 -1.98 
 

-0.180 -3.54 
 

-0.151 -2.76 

Log (base length) -0.410       -2.38 
 

-0.546 -1.86 
 

-0.524 -1.49 
 

-0.765 -2.06 

Weaving segments (enex seg.) -0.207 -2.94 
 

-0.366 -2.73 
 

-0.195 -1.41 
 

-0.308 -1.99 

Intercept  3.018 5.68    2.973 3.24   2.929 2.65    3.720 3.19 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.288 (0.166) 
    

0.214 (0.106) 

Variance - enex seg. (Std. err.)       0.421 (0.101)         0.185 (0.187) 

Model fit criteria 
           

lnL -831.748 
 

-655.31 
 

-620.443 
 

-613.968 

AIC 
 

1673.496 
 

1324.61 
  

1252.89 
 

1243.94 

BIC 
 

1691.300 
 

1349.54 
  

1274.25 
 

1272.42 

Alpha (α) 
      

0.669 
 

0.368 

LR test for α = 0  
      

422.61 (0.000) 
 

-4.10 (0.000) 

LR test Vs PO & NB (p-value)       352.88 (0.000)         12.95 (0.005) 
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Table 11 Model set #3: log (Traffic volume) and untransformed segment base length 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Log (Traffic volume)  1.723 12.76 
 

 0.727 2.90 
 

 1.623 6.30 
 

 1.291 4.30 

Right shoulder -0.172 -6.43 
 

-0.091 -2.11 
 

-0.180 -3.61 
 

-0.147 -2.80 

Base length -0.000       -1.85 
 

-0.546 -1.86 
 

-0.000 -1.48 
 

-0.000 -1.78 

Weaving segments (enex seg.) -0.365 -3.30 
 

-0.361 -2.63 
 

-0.183 -1.31 
 

-0.308 -1.97 

Intercept -10.410 -10.11    -3.472 -1.90   -9.531 -4.92    -7.252 -3.27 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.318 (0.166) 
    

0.174 (0.087) 

Variance - enex seg. (Std. err.)       0.357 (0.090)         0.197 (0.174) 

Model fit criteria 
           

lnL -792.000 
 

-653.542 
 

-618.500 
 

-610.90 

AIC 
 

1594.000 
 

1321.08 
  

1248.99 
 

1237.80 

BIC 
 

1611.801 
 

1346.01 
  

1270.36 
 

1266.29 

Alpha (α) 
      

0.636 
 

0.364 

LR test for α = 0  
      

347.01 (0.000) 
 

-4.39 (0.000) 

LR test Vs PO & NB (p-value)       276.91 (0.000)         15.19 (0.000) 
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Table 12 Model set #4: log (Traffic volume) and log (segment base length) 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Log (Traffic volume)  1.737 12.91 
 

 0.732 2.92 
 

 1.634 6.37 
 

 1.291 4.30 

Right shoulder -1.172 -6.41 
 

-0.094 -2.16 
 

-0.183 -3.65 
 

-0.152 -2.86 

Log (Base length) -0.155       -0.87 
 

-0.534 -1.85 
 

-0.498 -1.44 
 

-0.690 -1.88 

Weaving segments (enex seg.) -0.243 -3.48 
 

-0.385 -2.89 
 

-0.200 -1.43 
 

-0.324 -2.11 

Intercept -10.111 -7.91    -2.167 -1.03   -8.334 -3.55    -5.48 -2.07 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.363 (0.166) 
    

0.179 (0.088) 

Variance - enex seg. (Std. err.)       0.301 (0.162)         0.191 (0.173) 

Model fit criteria 
           

lnL -792.182 
 

-653.604 
 

-618.555 
 

-610.76 

AIC 
 

1594.363 
 

1321.21 
  

1249.11 
 

1237.53 

BIC 
 

1612.167 
 

1346.13 
  

1270.48 
 

1266.01 

Alpha (α) 
      

0.639 
 

0.362 

LR test for α = 0  
      

347.25 (0.000) 
 

-4.42 (0.000) 

LR test Vs PO & NB (p-value)       277.15 (0.000)         15.58 (0.000) 
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Table 13 Model set #5: Traffic volume in 10 mill vehicles and untransformed segment length 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume in 10mill
th
  0.150 10.43 

 
 0.080 2.18 

 
 0.316 5.57 

 
 0.181 2.95 

Right shoulder -0.193 -7.13 
 

-0.085 -1.93 
 

-0.176 -3.50 
 

-0.145 -2.70 

Base length -0.001       -2.62 
 

-0.000 -1.88 
 

-0.000 -1.58 
 

-0.000 -1.97 

Weaving segments (enex seg.) -0.190 -2.65 
 

-0.341 -2.47 
 

-0.179 -1.27 
 

-0.289 -1.83 

Intercept  2.000 14.76    1.604 6.37   1.592 5.35   -1.754 5.76 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.412 (0.100) 
    

0.193 (0.186) 

Variance - enex seg. (Std. err.)       0.309 (0.172)         0.206 (0.105) 

Model fit criteria 
           

lnL -831.014 
 

-655.203 
 

-620.319 
 

-614.04 

AIC 
 

1672.03 
 

1324.41 
  

1252.64 
 

1244.06 

BIC 
 

1689.831 
 

1349.33 
  

1274.00 
 

1272.57 

Alpha (α) 
      

0.667 
 

0.370 

LR test for α = 0  
      

421.39 (0.000) 
 

-4.06 (0.000) 

LR test Vs PO & NB (p-value)       351.62 (0.000)         12.55 (0.002) 
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Table 14 Model set #6: Traffic volume in 10 mill. Vehicles and log (segment base length) 

(Dep. var = crash frequency) PO 
 

ME PO 
 

NB 
 

ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume in 10mill
th
  0.152 10.64 

 
 0.080 2.18 

 
 0.318 5.63 

 
 0.180 2.93 

Right shoulder -0.194 -7.15 
 

-0.088 -1.98 
 

-0.180 -3.54 
 

-0.151 -2.04 

Log (Base length) -0.410     -2.38 
 

-0.546 -1.86 
 

-0.524 -1.49 
 

-0.765 -2.04 

Weaving segments (enex seg.) -0.207 -2.94 
 

-0.366 -2.73 
 

-0.195 -1.41 
 

-0.308 -1.99 

Intercept  2.018 5.68    2.973 3.24   2.929 2.65   -3.720 3.19 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.421 (0.101) 
    

0.214 (0.106) 

Variance - enex seg. (Std. err.)       0.288 (0.166)         0.185 (0.185) 

Model fit criteria 
           

lnL -831.748 
 

-655.306 
 

-620.442 
 

-613.97 

AIC 
 

1673.50 
 

1324.61 
  

1252.88 
 

1243.94 

BIC 
 

1691.30 
 

1349.54 
  

1274.25 
 

1272.42 

Alpha (α) 
      

0.669 
 

0.368 

LR test for α = 0  
      

422.61 (0.000) 
 

-4.10 (0.000) 

LR test Vs PO & NB (p-value)       352.88 (0.000)         12.95 (0.002) 
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Table 15: Model set #7: log (Traffic volume) and short segment base length (< 0.5 mile) 

 
PO 

 
ME PO 

 
NB 

 
ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Log of traffic volume  1.679 13.05 
 

 0.756 3.03 
 

 1.642 6.54 
 

 1.32 4.43 

Right shoulder -0.180 -6.68 
 

-0.101 -2.32 
 

-0.193 -3.87 
 

-0.16 -3.03 

Short base length   0.232 3.31 
 

 0.282 2.55 
 

 0.321 2.26 
 

 0.38 2.56 

Weaving segments (enex seg.) -0.239 -3.64 
 

-0.427 -3.37 
 

-0.241 -1.93 
 

-0.37 -2.61 

Intercept -10.191 -10.71   -3.952 -2.20   -9.900 -5.36   -7.74 -3.60 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.259 (0.154) 
    

0.139 (0.165) 

Variance - enex seg. (Std. err.)       0.367 (0.093)         0.196 (0.092) 

Model fit criteria 
           

lnL -787.234 
 

-652.119 
 

-617.019 
 

-609.246 

AIC 
   

1318.239 
    

1234.493 

BIC 
   

1343.163 
    

1262.978 

Alpha (α) 
      

0.626 
 

0.353 

LR test for α = 0  
      

340.43 (0.000) 
 

-4.51 (0.000) 

LR test Vs PO & NB (p-value)       270.23 (0.000)         15.55 (0.0002) 
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Table 16: Model set #8: Traffic volume and short segment base length (< 0.5 mile) 

 
PO 

 
ME PO 

 
NB 

 
ME NB 

Fixed effects parameters Coef. Stat.   Coef. Stat.   Coef. Stat.   Coef. Stat. 

Traffic volume  0.000 10.80 
 

 0.000 2.20 
 

 0.000 5.74 
 

 0.00 2.96 

Right shoulder -0.199 -7.31 
 

-0.093 -2.10 
 

-0.189 -3.73 
 

-0.16 -2.91 

Short base length   0.279 3.97 
 

 0.276 2.44 
 

 0.313 2.16 
 

 0.39 2.56 

Weaving segments (enex seg.) -0.234 -3.52 
 

-0.408 -3.20 
 

-0.247 -1.95 
 

-0.36 -2.51 

Intercept -1.762 -16.37    1.323 6.76     1.342 5.61    1.41 5.76 

Covariance parameters 
           

Variance - Intercept (Std. err.) 
   

0.433 (0.102) 
    

0.243 (0.115) 

Variance - enex seg. (Std. err.)       0.243 (0.157)         0.118 (0.177) 

Model fit criteria 
           

lnL -826.921 
 

-654.088 
 

-619.206 
 

-612.871 

AIC 
   

1322.176 
    

1241.562 

BIC 
   

1347.101 
    

1270.047 

Alpha (α) 
      

0.659 
 

0.357 

LR test for α = 0  
      

415.43 (0.000) 
 

12.85 (0.005) 

LR test Vs PO & NB (p-value)       345.67 (0.000)         15.55 (0.0002) 
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